Lecture 20: Object-Oriented Programming

CS 51P November 20, 2023

Review: Types in Python

Primitive Types

- int
- float
- bool

<
mn
U

Objects

- list
- dictionary
- Create your own...

X
y

[5]
[5]

>>> X ==y
True
>>> X is y
False

Review: Classes

- Defining a type:
- how would you describe it? what distinguishes one object of this
type from another?

- what can an object of this type do?

- Example: Classroom type
- attributes: building, room number, capacity, accessible

- methods:
- find out building, room number, capacity
- change capacity

rooml = Classroom("Seaver", "102", 36)
room2 = Classroom("Edmunds", "101", 30)
print (room2)

print (room2.get capacity())

room2.set capacity(50)

print (room2.get capacity())

Review: Classes

class Classroom:
def init (self, building, room, capacity):
self.building = building
self.room number = room
self.capacity = capacity

def str (self):
return(self.building + self.room number +
", capacity " + str(self.capacity))

def get building(self):
return self.building

def get room number (self):
return self.room number

def set capacity(self, capacity):
self.capacity = capacity

def check capacity(self, num):
return num <= self.capacity

Review: Creating and Using Objects

room = Classroom('"Seaver Commons", 102, 36)
print (room)

print (room.get capacity())
room.set capacity(50)
print (room.get capacity())

enough space([room, Classroom('"Edmunds", "101", 30")]1, 32)

Exercise

class Thing:

def init (self):
self.a =1
self.b = 4

def foo(self, param):
self.a = self.a + param
self.b = self.b + param
return (self.a + self.b)

def bar(self, param):
a = self.a + param
b = self.b + param
return (a + b)

def str (self):

return ('a is ' + str(self.a) +
', bis ' + str(self.b))

it = Thing()
print(it.foo(2))
print(it.bar(3))
print(it)

————
Programming as a way of thinking

- Decomposition

- what does a problem remind you of
- how can you reduce it to smaller, coherent pieces

- Abstraction:
- remove low-level details so you can focus on more important things

- Testing

- how do you know if something works

- Debugging

- how to isolate where the problem is

- Communication
- how to explain what you did

—————
Design

Assume you want to
simulate the following:
there are a group of people

every person has a closet
full of clothes

they each choose clothes
on any given day based on
the weather and their
personal preferences

when they all see each
other something happens
based on what each of
them chose

without using classes write a

program that behaves like this

DeS|gn Hint: use randint (9, 3)
—————————— Day 1 -—-—==————-
Assume yOU Want 1_:0 Alice has a blue shirt
simulate the following: Bob has a green shirt
—————————— Day 2 —-——=—————-
there are 2 people Alice has a red shirt
each person haS a Bob has a blue shirt
. . oy mmmm————— Day 3 —-=——===—=——-
collection of 4 shirts: red, | x1ice has a yellow shirt
blue, green, yeIIow Bob has a red shirt
—————————— Day 4 -———=—————-
every day for days the Alice has a red shirt
two people randomly Bob has a red shirt
choose a shirt to wear Alice and Bob are wearing
_ _ the same color shirt!
a speC|aI message Is | o ________ Day 5 —————————o

displayed on any day when |Alice has a red shirt
both people wear the same Bob has a blue shirt
color shirt

Design

Assume you want to
simulate the following:
there are 2 people

each person has a
collection of 4 shirts: red,
blue, green, yellow

every day for 5 days the
two people randomly
choose a shirt to wear

a special message is
displayed on any day when
both people wear the same
color shirt

Defining a class:
what attributes does it have?
what can you do with it?

—————————— Day 1 —-=——===———-
Alice has a blue shirt

Bob has a green shirt
—————————— Day 2 —-=——=—=————-
Alice has a red shirt

Bob has a blue shirt
—————————— Day 3 —-=——===—=——-
Alice has a yellow shirt
Bob has a red shirt
—————————— Day 4 —-—-————-———-
Alice has a red shirt

Bob has a red shirt

Alice and Bob are wearing
the same color shirt!
—————————— Day 5 —-=——=—————-
Alice has a red shirt

Bob has a blue shirt

Defining a class:
what attributes does it have?

Exercise what can you do with it?

class Person:
SHIRT COLORS = ("red", "green",

def init (self, person name):
pass

def get shirt color(self):
pass

def get name(self):
pass

def change shirt(self):
pass

def str (self):

pass

"blue",

"yellow")

————————
Exercise

- Assume you have a class Person with methods get_name,
get_shirt_color, and change_shirt. Implement a program that will
exhibit the following behavior:

—————————— Day 1 -—-———=———-
Alice has a blue shirt

Bob has a green shirt
—————————— Day 2 -—-—=——————-
Alice has a red shirt

Bob has a blue shirt
—————————— Day 3 -—-—-=—=———-
Alice has a yellow shirt
Bob has a red shirt
—————————— Day 4 -————————-
Alice has a red shirt

Bob has a red shirt

Alice and Bob are wearing the same color shirt!
—————————— Day 5 —-—===—c—-—-
Alice has a red shirt

Bob has a blue shirt

