
CS 51P November 20, 2023

Lecture 20: Object-Oriented Programming

Review: Types in Python

Primitive Types

• int
• float
• bool

Objects

• list
• dictionary
• Create your own…

x y

5

x = 5
y = 5

x = [5]
y = [5]

x

[5]

y

[5]>>> x == y
True
>>> x is y
True

>>> x == y
True
>>> x is y
False

Review: Classes
• Defining a type:
• how would you describe it? what distinguishes one object of this

type from another?
• what can an object of this type do?

• Example: Classroom type
• attributes: building, room number, capacity, accessible
• methods:
• find out building, room number, capacity
• change capacity

room1 = Classroom("Seaver", "102", 36)
room2 = Classroom("Edmunds", "101", 30)
print(room2)
print(room2.get_capacity())
room2.set_capacity(50)
print(room2.get_capacity())

Review: Classes
class Classroom:
 def __init__(self, building, room, capacity):
 self.building = building
 self.room_number = room
 self.capacity = capacity

 def __str__(self):
 return(self.building + self.room_number +
 ", capacity " + str(self.capacity))

 def get_building(self):
 return self.building

 def get_room_number(self):

 return self.room_number

 def set_capacity(self, capacity):
 self.capacity = capacity

 def check_capacity(self, num):
 return num <= self.capacity

Review: Creating and Using Objects

room = Classroom("Seaver Commons", 102, 36)
print(room)

print(room.get_capacity())
room.set_capacity(50)
print(room.get_capacity())

enough_space([room, Classroom("Edmunds", "101", 30")], 32)

class Thing:

 def __init__(self):
 self.a = 1
 self.b = 4

 def foo(self, param):
 self.a = self.a + param
 self.b = self.b + param
 return (self.a + self.b)

 def bar(self, param):
 a = self.a + param
 b = self.b + param
 return (a + b)

 def __str__(self):
 return ('a is ' + str(self.a) +
 ', b is ' + str(self.b))

it = Thing()
print(it.foo(2))
print(it.bar(3))
print(it)

Exercise

Programming as a way of thinking
• Decomposition
• what does a problem remind you of
• how can you reduce it to smaller, coherent pieces

• Abstraction:
• remove low-level details so you can focus on more important things

• Testing
• how do you know if something works

• Debugging
• how to isolate where the problem is

• Communication
• how to explain what you did

Design
• Assume you want to
simulate the following:
• there are a group of people
• every person has a closet

full of clothes
• they each choose clothes

on any given day based on
the weather and their
personal preferences

• when they all see each
other something happens
based on what each of
them chose

Design
• Assume you want to
simulate the following:
• there are 2 people
• each person has a

collection of 4 shirts: red,
blue, green, yellow

• every day for 5 days the
two people randomly
choose a shirt to wear

• a special message is
displayed on any day when
both people wear the same
color shirt

---------- Day 1 ----------
Alice has a blue shirt
Bob has a green shirt
---------- Day 2 ----------
Alice has a red shirt
Bob has a blue shirt
---------- Day 3 ----------
Alice has a yellow shirt
Bob has a red shirt
---------- Day 4 ----------
Alice has a red shirt
Bob has a red shirt
Alice and Bob are wearing
the same color shirt!
---------- Day 5 ----------
Alice has a red shirt
Bob has a blue shirt

without using classes write a
program that behaves like this

Hint: use randint(0,3)

Design
• Assume you want to
simulate the following:
• there are 2 people
• each person has a

collection of 4 shirts: red,
blue, green, yellow

• every day for 5 days the
two people randomly
choose a shirt to wear

• a special message is
displayed on any day when
both people wear the same
color shirt

---------- Day 1 ----------
Alice has a blue shirt
Bob has a green shirt
---------- Day 2 ----------
Alice has a red shirt
Bob has a blue shirt
---------- Day 3 ----------
Alice has a yellow shirt
Bob has a red shirt
---------- Day 4 ----------
Alice has a red shirt
Bob has a red shirt
Alice and Bob are wearing
the same color shirt!
---------- Day 5 ----------
Alice has a red shirt
Bob has a blue shirt

Defining a class:
what attributes does it have?
what can you do with it?

class Person:
 SHIRT_COLORS = ("red", "green", "blue", "yellow")

 def __init__(self, person_name):
 pass

 def get_shirt_color(self):
 pass

 def get_name(self):

 pass

 def change_shirt(self):
 pass

 def __str__(self):
 pass

Exercise
Defining a class:

what attributes does it have?
what can you do with it?

Exercise
• Assume you have a class Person with methods get_name,

get_shirt_color, and change_shirt. Implement a program that will
exhibit the following behavior:

---------- Day 1 ----------
Alice has a blue shirt
Bob has a green shirt
---------- Day 2 ----------
Alice has a red shirt
Bob has a blue shirt
---------- Day 3 ----------
Alice has a yellow shirt
Bob has a red shirt
---------- Day 4 ----------
Alice has a red shirt
Bob has a red shirt
Alice and Bob are wearing the same color shirt!
---------- Day 5 ----------
Alice has a red shirt
Bob has a blue shirt

