Lecture 17: Dictionaries

CS 51P Fall 2023

Example: Processing files

Write a function count_word that takes a file and a word and
returns the number of times that word appears in the file.

def count word(file, word in):
count = 0
lines = file.readlines()
for line in lines:
words = line.split()
for word in words:

w = word.strip(string.punctuation)
if w == word in:
count = count + 1
return count

What if you wanted to process a file so you could answer repeated
queries of the form "How many times does the word
appear?”

Dictionaries

a data structure that associates a key with a value
key is a unique identifier (must be immutable)
value is something we associate with that key
dictionary stores key:value pairs

d = {'apple': .99, 'banana': .19, 'cantelope': 2.99}

Real world examples
dictionary (key: word, value: definition)
phonebooks (key: name, value: phone number)
price list (key: product, value: price)

Creating Dictionaries

- Dictionaries start/end with curly braces
- Kev:value pairs have colons in between
- Each pair is separated by a common

- Examples:
- empty_dict = {}
- phone_book = {"Joe": "909-607-9799", "Alexandra": "909-607-0969"}
- prices = {"apple": .99, "banana": .19, "melon": 2.99}

prices == | "apple" |—-b| 0.99
"banana" |—-—D| 0.19
"melon” |——b| 2.99

Accessing Dictionary Elements

- Given a dictionary d, use any key k to access the
associated value d[K]

- Example:
- prices = {"apple": .99, "banana": .19, "melon": 2.99}

prices === | "apple" |—-b| 0.99
"banana" |—-D| 0.19
"melon” |—-b| 2.99

- prices["apple"] is .99
- prices["melon"] is 2.99
- price["grape"] is ??? KeyError

Accessing all Dictionary Elements

- Given a dictionary d:
- d.keys() returns a list of all the keys in d
- d.values() returns a list of all the values ind
- d.items() returns a list of all the (key, value) pairsind

- Example:
- prices = {"apple": .99, "banana": .19, "melon": 2.99}

for key in prices.keys():
price = prices|[key]
print("The price of a", key, "is", price)

price_list=--» | "apple" |—-b| 0.99

"banana" |—-—D| 0.19

"melon” |——b| 2.99

Example

- Define a function most expensive that takes one
parameter, a dictionary prices, and returns the item with

the highest price.

- You may assume that prices contains at least one item.

Exercise

- Define a function under price(grocery store, p)
that takes two parameters, a dictionary grocery store
and a price p, and returns the number of unique items
available for less than (or equal to) price p.

Checking for Dictionary Elements

- Given a dictionary d:
- d.keys() returns a list of all the keys in d
- d.values() returns a list of all the values ind
- d.items() returns a list of all the (key, value) pairsind

- Example:
- prices = {"apple": .99, "banana": .19, "melon": 2.99}

if "apple" in prices.keys():
print("The price of an apple is", price)

price_list=--» | "apple" |—-b| 0.99

"banana" |—-—D| 0.19

"melon” |——b| 2.99

Exercise

- Define a function compute cost that takes two arguments,
a dictionary prices and list of items shopping list
and returns the total cost of buying all the items on the
shopping list. If an item on the shopping list is not in the
prices dictionary, just exclude it from the total cost.

Modifying Dictionaries

price_list === | "gpple" |——b| 1.99

"banana" |——-D| 0.19
"lemon” |—-—b| .50

cadd: d["lemon"] = .50
-update: d["apple"] = 1.99
-delete: d.pop("melon”) returns 2.99

Example

- Define a function add items that takes two arguments,
a dictionary grocery store and list of item-price pairs
new_items and adds the new items (with their associated
prices) to the grocery store.

Exercise

def mystery(my dict):
d = {}
for 1 in my dict.keys():
1f my dict[1] in d:
d[my dict[1]].append(1)
else:
d[imy dict[1]] = [1]
return d

def main():
d — {lla":l, llblI:2, "C":]_, lldll:O, llell:2}
print(mystery(d))

main()

Dictionary Operations

adding to a dictionary other
a_dict[key] = value len(a_dict)
a_dict.update(b dict) a_dict.keys()
returns list
removing from a dictionary a_dict.values()
del (a_dict[key]) returns list
a_dict_pop(key) a_dict.items()
returns a_dict[key] returns list of tuples
b _dict = a_dict.copy()
shallow copy!

Lists, dictionaries

- Both data structures.

- Why would you choose one over the other?

- a data structure is something that holds a collection of data and
that supports certain operations for working with that data

- Lists: sequential access
- Dictionaries: fast lookup

Example: Word Count

Object done might

Naturalg: o0& sze e, o
‘c Word2Vec similar many = C
Statlstlcal

Google positive machine
Rules-based Translation

extraction O £ 009/€ blo
= 2 understand == E 8 T

engines m "nngt'C ConSU|tant g PrOCeSSIng > 2
rules { Credit know QO

E)
sssss

2 mode @ Machine oa‘;,o[';,‘gs
mdaﬁéteXt N - q naturalq

~ ot problem -
Ilke§ ; Learnlng statistical £

commonse
determlnlstlc able

kn_o

movmg

‘g <€

U () o

g Understanding g g Nsomrch -~ dlﬁeLent tools post
o humans s i 2 O translation v et

5 a Engish 2 humans ;:
© Subscribe approach 2 3 Sty g 8 S
O even S g daily & & "é 3
o et make mainstream - S Y'© =
£ http://www.stuartduncanname O o g Space proces
e conversational £ something explanation 3

% lives - problems g P interfaces

thesaurus first

g Rules Based
§ pone Search t Q every 2
3) s prec'se Rule-Based ¢

s & perform .C dlscourse

*ra' Parsing ==

...-
A~ 4]

©
called 3 funny chatbots

ro highly

- Write a function that processes a file and returns a
dictionary for handling repeated queries of the form "How
many times does the word appear?"

——————
Example: Word Count

Write a function that processes a file and returns a
dictionary for handling repeated queries of the form "How
many times does the word appear?"

def count words(filename):
counts = {}
f = fopen("file.txt", "r")
text = f.readlines|()
for line in text:
words = line.split()
for w in words:
w2 = w.strip(string.punctuation)
if w2 in word counts:
word counts[w2] = word counts[w2] + 1
else:
word counts[w2] =1
f.close()
return counts

