
CS 51P Fall 2023

Lecture 17: Dictionaries

Example: Processing files
• Write a function count_word that takes a file and a word and

returns the number of times that word appears in the file.

• What if you wanted to process a file so you could answer repeated
queries of the form "How many times does the word _____
appear?"

def count_word(file, word_in):
 count = 0
 lines = file.readlines()
 for line in lines:
 words = line.split()
 for word in words:
 w = word.strip(string.punctuation)
 if w == word_in:
 count = count + 1
 return count

Dictionaries
• a data structure that associates a key with a value
• key is a unique identifier
• value is something we associate with that key
• dictionary stores key:value pairs

(must be immutable)

d = {'apple': .99, 'banana': .19, 'cantelope': 2.99}

• Real world examples
• dictionary (key: word, value: definition)
• phonebooks (key: name, value: phone number)
• price list (key: product, value: price)

Creating Dictionaries
• Dictionaries start/end with curly braces
• Kev:value pairs have colons in between
• Each pair is separated by a common

• Examples:
• empty_dict = {}
• phone_book = {"Joe": "909-607-9799", "Alexandra": "909-607-0969"}
• prices = {"apple": .99, "banana": .19, "melon": 2.99}

"apple"

"banana"

"melon"

0.99

0.19

2.99

prices

Accessing Dictionary Elements
• Given a dictionary d, use any key k to access the

associated value d[k]

• Example:
• prices = {"apple": .99, "banana": .19, "melon": 2.99}

• prices["apple"] is .99
• prices["melon"] is 2.99
• price["grape"] is ???

"apple"

"banana"

"melon"

0.99

0.19

2.99

prices

KeyError

Accessing all Dictionary Elements
• Given a dictionary d:
• d.keys() returns a list of all the keys in d
• d.values() returns a list of all the values in d
• d.items() returns a list of all the (key, value) pairs in d

• Example:
• prices = {"apple": .99, "banana": .19, "melon": 2.99}

"apple"

"banana"

"melon"

0.99

0.19

2.99

price_list

for key in prices.keys():
 price = prices[key]
 print("The price of a", key, "is", price)

Example
• Define a function most_expensive that takes one

parameter, a dictionary prices, and returns the item with
the highest price.

• You may assume that prices contains at least one item.

Exercise
• Define a function under_price(grocery_store, p)

that takes two parameters, a dictionary grocery_store
and a price p, and returns the number of unique items
available for less than (or equal to) price p.

Checking for Dictionary Elements
• Given a dictionary d:
• d.keys() returns a list of all the keys in d
• d.values() returns a list of all the values in d
• d.items() returns a list of all the (key, value) pairs in d

• Example:
• prices = {"apple": .99, "banana": .19, "melon": 2.99}

"apple"

"banana"

"melon"

0.99

0.19

2.99

price_list

if "apple" in prices.keys():
 print("The price of an apple is", price)

Exercise
• Define a function compute_cost that takes two arguments,

a dictionary prices and list of items shopping_list
and returns the total cost of buying all the items on the
shopping list. If an item on the shopping list is not in the
prices dictionary, just exclude it from the total cost.

Modifying Dictionaries

• add: d["lemon"] = .50
• update: d["apple"] = 1.99
• delete: d.pop("melon")

"apple"

"banana"

"melon"

0.99

0.19

2.99

price_list "apple"

"banana"

"melon"

0.99

0.19

2.99

price_list

"lemon" .50

1.99"apple"

"banana"

1.99

0.19

price_list

"lemon" .50

returns 2.99

Example
• Define a function add_items that takes two arguments,

a dictionary grocery_store and list of item-price pairs
new_items and adds the new items (with their associated
prices) to the grocery store.

def mystery(my_dict):
 d = {}
 for i in my_dict.keys():
 if my_dict[i] in d:
 d[my_dict[i]].append(i)
 else:
 d[my_dict[i]] = [i]
 return d

def main():
 d = {"a":1, "b":2, "c":1, "d":0, "e":2}
 print(mystery(d))

main()

Exercise

Dictionary Operations

• a_dict[key] = value
• a_dict.update(b_dict)

removing from a dictionary
• del (a_dict[key])
• a_dict.pop(key)
• returns a_dict[key]

• len(a_dict)
• a_dict.keys()
• returns list

• a_dict.values()
• returns list

• a_dict.items()
• returns list of tuples

• b_dict = a_dict.copy()
• shallow copy!

adding to a dictionary other

Lists, dictionaries
• Both data structures.
• Why would you choose one over the other?
• a data structure is something that holds a collection of data and

that supports certain operations for working with that data

• Lists: sequential access
• Dictionaries: fast lookup

Example: Word Count

• Write a function that processes a file and returns a
dictionary for handling repeated queries of the form "How
many times does the word _____ appear?"

Example: Word Count
• Write a function that processes a file and returns a

dictionary for handling repeated queries of the form "How
many times does the word _____ appear?"

def count_words(filename):
 counts = {}
 f = fopen("file.txt", "r")
 text = f.readlines()
 for line in text:
 words = line.split()
 for w in words:
 w2 = w.strip(string.punctuation)
 if w2 in word_counts:
 word_counts[w2] = word_counts[w2] + 1
 else:
 word_counts[w2] = 1
 f.close()
 return counts

