Lecture 16: Exceptions

CS 51P November 6, 2023

Prog rammlng Except when they don't

Because, sometimes, they won't

wirror_mod.use_x = Falsg
ey = Falsp
True

the end -add back the deselected mirrgg modifjer object
> ®

bpy.context.scene.objects.active |=|modifier_ob \

print(“Selected” + str(wodifien ob)) # modifier ob is the-active cbo
A

0

B
.:l:' |- ...2

Common Types of Errors

- Syntax Errors: there is something wrong with the structure
of the program, and Python doesn't understand it

- Runtime Errors: something goes wrong while the program
IS running (Exceptions)

- Semantic Errors: the program runs, but it doesn't do what
you want it to do

Example Runtime Errors

NameError: Python doesn't recognize a (variable) name

TypeError: Python can't perform that operation/function on
values of that type

ValueError: Python can't perform that operation/function
on that particular value

|OException: Python can't find (or can't open) a filename
you gave it

What if your code depends on inputs you
don't control?

def example2(filename):

s =0

file = open(filename, "
for 1 in file:

s = s + int(i)
file.close()

r")

return s

what if the file doesn't exist?
what if it does exist but you don't have access permissions?

what if the file exists and you can open it for reading, but it
doesn't contain integers?

What if your code depends on inputs you
don't control?

- Best answer: check whether input will work before using it
- if str.isdigit(user_in)

- Alternate answer: try it and crash if an error occurs

- Alternate answer: try it and recover if an error occurs
- Warning: very inefficient

Exception Handling

- A flexible mechanism for handling errors

try:
code to execute
except:

what to do if there's an error

Example: Exception Handling

def exception v0(filename):

s =0

try:
file = open(filename, "r")
for 1 in file:

s = s + int(1i)

file.close()

except:
print("An error occurred")
s = -1

print(s)

—————
Exercise 1: Exception Handling

Write a function return_int that asks the user to enter
an integer. If the user enters an integer, the function
returns that integer. If the user does not enter an integer,
the function returns 0.

Use exceptions to handle the case where the user does
not enter an integer. Do not use an if statement.

Example: Exception Handling

def exception v0(filename):

s =0

try:
file = open(filename, "r")
for 1 in file:

s = s + int(1i)

file.close()

except:
print("An error occurred")
s = -1

print(s)

Handling Multiple Exceptions

- A flexible mechanism for handling errors

trv:
try:
code to execute

es
except <Errorl>:

what to do if Errorl occurs

except <Error2l>:

what to do if Error 2 occurs

Example: Handling Multiple Exceptions

def exception vl(filename):

s =0
try:
file = open(filename,
for i in file:
s = s + int(i)

rll)

file.close()
except IOError:
print("problem opening file")
s = -1
except ValueError:
print("file contained non-integer value")
file.close()

s = -1
print(s)

Exercise 2: Handling Multiple Exceptions

Define a function list_avg that takes one parameter Ist (a
list) and returns the average of that list. If the list contains
non-numeric values, the function should print a message
explaining the error and then return -1. If the list is empty,
the function should print an explanation and then return 0.

Use exceptions to handle the two corner cases. Do not
use an if statement in your function definition.

Handling the non-exception case

- A flexible mechanism for handling errors

trv:
trv:
o3 try:
o3 # code to execute
except <Errorl>:

es # what to do if Errorl occurs

except <Error2l>:

what to do if Error 2 occurs
else:

additional code if no errors

Example: Handling the non-exceptional case

def exception v2(filename):

s =0
try:

file = open(filename,
except IOError:

print ("problem opening file')

rll)

s = =1
else:
for i1 in file:

try:
s = s + int(i)
except ValueError:
print ("problem with non-integer")

s = -1
file.close()

print(s)

—————
Exercise 3. Exception Handling

def f(x,vy):
try:

- What happens when you

try:
evaluate f("abc","a")?

for i1 in Xx:

print(int(i))

print(x[y]) - What happens when you

except-ValueError: evaluate 'F([1,2,3],4)?
print (1)

except TypeError:

print(2) - What happens when you

except IndexError: evaluate f([4,5,6],1)7
print(3)

else:
print(4)
print(5)
except:

print(6)

—————
Raising Exceptions

- You can use the raise keyword to throw your own
exceptions
- raise Exception("CS51P Exception")
- raise ValueError("Invalid filename")

Example: Raising Exceptions

def exception v3(filename):
s =0
try:
file = open(filename,
for 1 in file:
s = s + int(i)

r")

file.close()
except IOException:
raise ValueError("Invalid filename")

except ValueError:
file.close()

raise ValueError("file contained non—int")

print(s)

Exercise 4: Raising Exceptions

Write a function return_pos_int_onetry that asks the
user to enter a positive integer. If the user enters a positive
integer, the function returns that integer. If the user does not
enter a positive integer, the function raises a ValueError.

