
CS 51P November 6, 2023

Lecture 16: Exceptions

Programming Except when they don't
Because, sometimes, they won't

Common Types of Errors

• Syntax Errors: there is something wrong with the structure
of the program, and Python doesn't understand it

• Runtime Errors: something goes wrong while the program
is running (Exceptions)

• Semantic Errors: the program runs, but it doesn't do what
you want it to do

Example Runtime Errors

• NameError: Python doesn't recognize a (variable) name

• TypeError: Python can't perform that operation/function on
values of that type

• ValueError: Python can't perform that operation/function
on that particular value

• IOException: Python can't find (or can't open) a filename
you gave it

def example2(filename):
 s = 0

 file = open(filename, "r")
 for i in file:
 s = s + int(i)
 file.close()

 return s

• what if the file doesn't exist?
• what if it does exist but you don't have access permissions?
• what if the file exists and you can open it for reading, but it

doesn't contain integers?

What if your code depends on inputs you
don't control?

What if your code depends on inputs you
don't control?

• Best answer: check whether input will work before using it
• if str.isdigit(user_in)

• Alternate answer: try it and crash if an error occurs

• Alternate answer: try it and recover if an error occurs
• Warning: very inefficient

Exception Handling
• A flexible mechanism for handling errors

try:
 # code to execute
except:
 # what to do if there's an error

def example2(filename):
 s = 0

 file = open(filename, "r")
 for i in file:
 s = s + int(i)
 file.close()

 return s

Example: Exception Handling
def exception_v0(filename):
 s = 0

 try:
 file = open(filename, "r")
 for i in file:
 s = s + int(i)
 file.close()
 except:
 print("An error occurred")
 s = -1

 print(s)

Exercise 1: Exception Handling
• Write a function return_int that asks the user to enter

an integer. If the user enters an integer, the function
returns that integer. If the user does not enter an integer,
the function returns 0.

• Use exceptions to handle the case where the user does
not enter an integer. Do not use an if statement.

def example2(filename):
 s = 0

 file = open(filename, "r")
 for i in file:
 s = s + int(i)
 file.close()

 return s

Example: Exception Handling
def exception_v0(filename):
 s = 0

 try:
 file = open(filename, "r")
 for i in file:
 s = s + int(i)
 file.close()
 except:
 print("An error occurred")
 s = -1

 print(s)

Handling Multiple Exceptions
• A flexible mechanism for handling errors

try:
 # code to execute
except:
 # what to do if there's an error

try:
 # code to execute
except <Error1>:
 # what to do if Error1 occurs
except <Error2>:
 # what to do if Error 2 occurs

def exception_v1(filename):
 s = 0
 try:
 file = open(filename, "r")
 for i in file:
 s = s + int(i)
 file.close()
 except IOError:
 print("problem opening file")
 s = -1
 except ValueError:
 print("file contained non-integer value")
 file.close()
 s = -1
 print(s)

Example: Handling Multiple Exceptions

Exercise 2: Handling Multiple Exceptions
• Define a function list_avg that takes one parameter lst (a

list) and returns the average of that list. If the list contains
non-numeric values, the function should print a message
explaining the error and then return -1. If the list is empty,
the function should print an explanation and then return 0.

• Use exceptions to handle the two corner cases. Do not
use an if statement in your function definition.

Handling the non-exception case
• A flexible mechanism for handling errors

try:
 # code to execute
except:
 # what to do if there's an error

try:
 # code to execute
except <Error1>:
 # what to do if Error1 occurs
except <Error2>:
 # what to do if Error 2 occurs

try:
 # code to execute
except <Error1>:
 # what to do if Error1 occurs
except <Error2>:
 # what to do if Error 2 occurs
else:
 # additional code if no errors

def exception_v2(filename):
 s = 0
 try:
 file = open(filename, "r")
 except IOError:
 print("problem opening file")
 s = -1
 else:
 for i in file:
 try:
 s = s + int(i)
 except ValueError:
 print("problem with non-integer")
 s = -1
 file.close()
 print(s)

Example: Handling the non-exceptional case

def f(x,y):
 try:
 try:
 for i in x:
 print(int(i))
 print(x[y])
 except ValueError:
 print(1)
 except TypeError:
 print(2)
 except IndexError:
 print(3)
 else:
 print(4)
 print(5)
 except:
 print(6)

Exercise 3: Exception Handling
• What happens when you

evaluate f("abc","a")?

• What happens when you
evaluate f([1,2,3],4)?

• What happens when you
evaluate f([4,5,6],1)?

Raising Exceptions
• You can use the raise keyword to throw your own

exceptions
• raise Exception("CS51P Exception")
• raise ValueError("Invalid filename")

Example: Raising Exceptions
def exception_v3(filename):
 s = 0
 try:
 file = open(filename, "r")
 for i in file:
 s = s + int(i)
 file.close()
 except IOException:
 raise ValueError("Invalid filename")
 except ValueError:
 file.close()
 raise ValueError("file contained non—int")
 print(s)

Exercise 4: Raising Exceptions
Write a function return_pos_int_onetry that asks the
user to enter a positive integer. If the user enters a positive
integer, the function returns that integer. If the user does not
enter a positive integer, the function raises a ValueError.

