
CS 51P November 1, 2023

Lecture 15: Nested Lists

Access elements in an inner list
• A list that consists of an inner list

• a_list

• a_list[2] is [1, 2]
• a_list[2][0] is 1
• a_list[2][1] is 2

• To access or modify elements, specify index in “outer” list
first, then index in “inner” list

a_list = [3.5, 6, [1, 2], "abc"]

3.5 6 [1, 2] “abc”

0 1 2 3

Nested lists
• Can create a list of lists aka a nested list!
• 2-D list is a list of lists
• Each element of “outer” list is just another list (the inner list)
• Can think of this as a matrix if inner lists have the same size

• Example:
• matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

• matrix
• 0 1 2

• matrix[0] [1, 2, 3]
• matrix[1] [4, 5, 6]
• matrix[2] [7, 8, 9]

[1, 2, 3] [4, 5, 6] [7, 8, 9]

Nested lists
• Can create a list of lists aka a nested list!
• 2-D list is a list of lists
• Each element of “outer” list is just another list (the inner list)
• Can think of this as a matrix if inner lists have the same size

• Example:
• matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

• matrix
• 0 1 2

• matrix[0][0] 1
• matrix[1][0] 4
• matrix[2][2] 9

[1, 2, 3] [4, 5, 6] [7, 8, 9]

Example

a_list = [[4, [True, False], 6, 8], [888, 999]]

if alist[0][1][0]:
 print(alist[1][0])
else:
 print(alist[1][1])

• Nested lists can be N-dimensional
• Inner lists do not have to be in the same size

Example
• Define a function nested_total that takes a list of
lists of ints and returns the sum of all the values.

list = [[1,2], [3], [4,5,6]]
sum = nested_total(list)
print(sum)

21

Exercise
• Define a function nested_avg that takes a list of
lists of ints and returns a list with each sublist
averaged

list = [[1,2], [3], [4,5,6]]
list_avg = nested_avg(list)
print(list_avg)

[1.5, 3.0, 5.0]

Example - Sudoku

• Rules of the game:
• Grid of 9x9 spaces
• Each row, column, and 3x3 square needs to have the numbers 1-9, without

repeating any numbers within row, column or square

board = [[0,0,9,6,0,7,4,3,1],
 [8,0,0,0,5,3,0,0,9],
 [0,6,0,2,0,0,5,0,0],
 ...
 [4,0,0,1,0,2,6,5,0]]

Example

• write a function set_value that takes a nested list board and ints i,
j, n and updates the (i,j)th entry of board to be the value n

• write a function check_row that takes an int i and a nested list
board. The function should return True if and only if row i contains
each integer from 1 through 9 exactly once.

board = [[0,0,9,6,0,7,4,3,1],
 [8,0,0,0,5,3,0,0,9],
 [0,6,0,2,0,0,5,0,0],
 ...
 [4,0,0,1,0,2,6,5,0]]

Exercise

• write a function check_column that takes an int j and a nested list
board. The function should return True if and only if column i contains
each integer from 1 through 9 exactly once.

• write a function check_block that takes ints i and j and a nested list
board. The function should return True if and only if the 3x3 block
starting at row i, column j contains each integer from 1 through 9
exactly once

• write a function check_solution that takes a nested list board and
returns True if and only if board represents a correctly solved puzzle.

board = [[0,0,9,6,0,7,4,3,1],
 [8,0,0,0,5,3,0,0,9],
 [0,6,0,2,0,0,5,0,0],
 ...
 [4,0,0,1,0,2,6,5,0]]

