
CS 51P October 30, 2023

Lecture 14: Lists (cont'd)

Lists
• a list is an ordered collection of arbitrary elements:

• a list is a sequence, so can index into, loop over, check
for membership, slice, etc

• lists are mutable
• Add, remove or modify elements

a_list = [3, 6.5, True, “a”, [5, 3]]
b_list = []
c_list = "a b c d".split()

List Operations

adding to a list
(updates original list)
• a_list.extend(list)
• a_list.append(elem)

• Different than extend – e.g. [5, 1]
• a_list.insert(index, elem)

• Insert elem at index, shifts down

removing from a list

• a_list.remove(elem)
• removes 1st instance of elem
• error if elem not in a_list

• del a_list[slice])
• removes the slice from the list based on

the given index
• a_list.pop()

• returns (and removes) a_list[-1]
• a_list.pop(index)

• returns (and removes) a_list[index]modifying a list

• direct assignment
• a_list[0] = 2

List Operations

+ and * operators
• Works on lists, but creates a

new list
• >>> a_list = [1, 2, 3]
• >>> new_list = a_list + a_list
• >>> new_list
• [1,2,3,1,2,3]
• >>> another_list = a_list * 2
• >>> another list
• [1,2,3,1,2,3]

other
• min(a_list), max(a_list),

sum(a_list)
• len(a_list)
• a_list.index(elem)

– returns index of 1st instance of
elem or error

• a_list.count(elem)
– returns the number of elem in

the list
• a_list.copy()

– Returns a copy of list

Example
• Define a function word_list that takes a filename as an

argument and returns a list of all the words in that file.

Exercise
• Define a function count_words that takes a filename as

input and returns the total number of unique words in that
file

List alias
>>> sports = ["basketball", "soccer", "tennis"]
>>> my_sports = sports
>>> my_sports.append("swimming")
>>> my_sports
>>> ?
>>> sports
>>> ?

• The same list that have two different names
• Changes made with one list will affect the other

List.copy()
• list.copy() – returns a copy of the list

• >>> sports = ["basketball", "soccer", "tennis"]
• >>> my_sports = sports.copy()
• >>> my_sports.append("swimming")
• >>> my_sports
• ???
• >>> sports
• ???

Example
• Can we define a function capitalize_colors that

takes in a list of rainbow colors as input, and modify the
colors in place?

list comprehension (filter + map)

• Examples:
• write a function double that takes a list of ints and

returns a list with every number doubled
• write a function odds that takes a list of ints and returns

a list of the odd elements

new_list = [map(i) for i in old_list if filter(i)]

new_list = []
for i in old_list:
 if filter(i):
 new_list.append(map(i))

Exercise
• Use list comprehension to write a function
square_positive that takes a list of ints and returns a
list that contains the square of all those that are positive.
For example, square_positive([-1, -2, 3, 4, -5]) will return
[9, 16].

Tuples
• a tuple is an ordered set of elements:

• ways to create a tuple:

• a tuple is a sequence, so can index into, loop over, check for
membership, slice, etc

• operators: + and *
• tuples are immutable

(3, 6, 2, 1)

tup = (3, 6, 2, 1)
tup1 = ()
tup2 = tuple(["a","b","c"])

>>> tup[1]
>>> 6

Tuples are immutable
• tuples are immutable (can not be changed in place)

• TypeError: ’tuple’ object does not support item assignment

tup = (3, 6, 2, 1)
tup[0] = 4

Tuple unpacking
• Can use tuples to assign multiple variables at the same

time

• >>> (x, y) = (5, 1)
• >>> x
• 5
• >>> y
• 1

• Number of variables on left hand side needs to be the
same as the right hand side

Why Tuples?
• More restrictive because it is immutable
• Tuples are more memory efficient than lists
• Execution speed of using tuples is faster than using lists

Example/Exercise
• Use list comprehension to write a function
average_pairs that takes a list of pairs (two-element
tuples where both elements are integers), and returns a
list consists of the average value of each pair. For
example average_pairs([(1, 2), (2, 3), (3, 4)]) will return
[1.5, 2.5, 3.5].

Pixels and RGB
• A PPM image consists of

• Header
• Body that consists of
 rows of pixels

P3
3 2
255
255 0 0 0 255 0 0 0 255
122 23 55 128 200 100 0 0 0

• Each pixel holds RGB
values
• Red, Green, and Blue
• Each value is the brightness for

the color
• Can make any color from RGB

header

body

