Lecture 11: Debugging and Testing

CS 51P October 11, 2023

Announcements

- Checkpoint 2

- Functions through Debugging and Testing
- October 23, 2023

S

NORK

Common Types of Errors

- Syntax Errors: there is something wrong with the structure
of the program, and Python doesn't understand it

- Runtime Errors: something goes wrong while the program
IS running

- Semantic Errors: the program runs, but it doesn't do what
you want it to do

Handling Syntax Errors

Find the bug
/Users/eleanor/PycharmProjects/51P/2019fa/venv/bin/python /Users/eleanor/Py

Process finished with exit code 1

Do you see the problem?
If yes, fix it!
If no, try running through the list of common syntax bugs
If still no, check your class notes, discuss the problem abstractly

with a friend ("what's the right syntax for..."), or ask a
TA/instructor (it's ok to get help!)

———————————
Common Syntax Errors

Misspelling a variable name or a function name
Missing quotation marks around a string

Mismatched parentheses or quotation marks

Missing a colon at the end of an if/while/for statement
Using = instead of ==

Using a Python keyword as a variable name

Make sure you remembered to save your file
after making your changes!

Example

in = int(input("Pick a number\n")) <@ SyntaxError
if in = 13: <= SyntaxError
print("I am also fond of the number 13!")
elif in > 13:
print("I am fond of the number 13, which is
+ str(in-13) + " less than " + str(in) <@ SyntaxError

else <= SyntaxError
print("I am fond of the number 13, which is "

+ str(13-in) + " more than " + str(in) <= SyntaxError

in2 = input("Do you like tea?) <= SyntaxError
while in2 I= "yes" and != "no": <= SyntaxError
in2 = input("Please answer yes or no. Do you like tea?")
if in2 == "yes":
print("Great!")
else:

print("That's too bad.")
print("Bye!) <= SyntaxError

Can you find the
the mistake?
12 456789

Handling Runtime Errors: Program Hangs

- You are probably in an infinite loop!
- Add print statements to figure out how far you got

- Add print statements to find line(s) that repeat over and
over

- Your program might also just be waiting for an input

Handling Runtime Errors: Exceptions

- NamekError: Python doesn't recognize a (variable) name
- Find the bug!
- Did you forget quotation marks around a string?
- Did you misspell a variable name? Make a typo?
- Is the variable you are trying to use in scope? Use before define?

Scope
Storing a value in a variable:

. 1. Ifthere is a variable with that name
def good_choice(num): in the current function's stack frame,
1 b= (num == fav) store the value in that variable
2 return b 2. Otherwise create a new variable in

the current function's stack frame

def main(): and store the value there
1 fav = 47
> number = int(input()) Using avariable:
5 if good _choice(number): . Check for a local variable with that
4 print("yay") name. !f it exists,.use the value
- elce: stored in that variable

o 2. Otherwise get a NameError
6 print("boo")

Exercise

def print_example(s4,s5):
sl = 3*s4
S2 = S4+4s5
print(sl)
print(s2)
return sl+s2

sl = 'I"

s2 = '?'

print(sl)

s3 = print_example(sl,s2)
print(s2)

print(s3)

print(s4)

Handling Runtime Errors: Exceptions

NameError: Python doesn't recognize a (variable) name
Find the bug!
Did you forget quotation marks around a string?
Did you misspell a variable name? Make a typo?
Is the variable you are trying to use in scope? Use before define?

TypeError: Python can't perform that operation/function on that
type

Find the bug!

Are the types that the error reports the type you expected?

Add a print statement on the previous line and print out all the
variables/values on that line. Are they what you expect?

ValueError: Python can't perform that operation/function on that
value
Find the bug!

Add a print statement on the previous line and print out all the
variables/values on that line. Are they what you expect?

When your code runs...

|Belvin's Law 3| If the code works the first
time, that just means that the
bug is more carefully hidden.

Gee, thanks for that.

© 2017 The Code Zone Visit angriestprogrammer.com for your dose of cynicism

Example 4

- Simple password checking:
- Password should contain at least 8 characters
- Only one requirement

Handling Semantic Errors

- Add print statement in the appropriate places

- Print out the value of variables that you want to keep track
of

- Compare the print out result with your expected result

Take a break

Hey you goin’
to sleep?

[think I figured out how
to debug your program

When your code runs...

|Belvin's Law 3| If the code works the first
time, that just means that the
bug is more carefully hidden.

Gee, thanks for that.

© 2017 The Code Zone Visit angriestprogrammer.com for your dose of cynicism

——————————
Testing

Try running your function with different values, called test
cases, and make sure it returns the right value

Branch Testing (white-box testing)
make sure that every line of code is executed by at least once

for conditionals, try include a test case that makes the condition
evaluate to True and a test case that makes the condition evaluate to
False

for loops, try to include test cases that make the program go through
the loop O times, 1 time, and lots of times

Corner-Case Testing (black-box testing)
include the "weird" values in your test cases
e.g., for ints, include negative numbers and zero, as well as positive
e.g., for strings, include the empty string

—————
Testing in Python

- Create a new file called <program_name>_tester.py

- Import the functions you want to test
from demoll import sum_even

- Using assert statements to test program behavior
assert <condition»

——————————————
Example

demo11.py demo11_tester.py

def sum_even(start, end): from demoll import sum_even

Computes the sum of the .
even numbers between <start> def main():

. . assert type(sum_even(1,5 == int
and <end> (inclusive). qesert Sﬁﬁ éven 1,5 (== %)
:param start: (int) one end Jecert sum evengl 6) == 12
. of range assert sum_even(2,5) == 6
:param end: (int) other end assert sum _even(2,6) == 12
of range assert sum_eveng 1) == 0
:return: (int) sum of evens assert sum even(2 2) == 2

for i in range(start, end):
ifi% 2 == 0:

sum = 1 if __name__ == "__main__

————
Code Tracing

- Execute the program line by line by hand

num = add_one(46)

X | 47

return | 47

- If you get the right answer by hand, add print statements
to determine where your code starts doing something
different

Rubber-Duck Debugging

WHAT'S WITH THE IT'S A DEBUGGING
RUBBER DUCK METHOD. YOU EXPLAIN THE
ON YOUR DESK PROBLEM QUT LOUD TO

HIM, AND IN THE PROCESS
REALIZE THE SOLUTION

95
OK.. 3

/—~\ TI'LL TRY
[SBF_E

————
Debugging...

A
l

Debugging...

Bonus Exercise

- Example 2

- Example 5
- sum_even again!

