
CS 51P October 9, 2023

Lecture 10: Recursion

Recursion
• Objects containing smaller copies of itself

• Define a base case when an answer can be returned
directly, e.g., doesn’t need to recursively call the function
itself anymore

• Define a recursive case when the function calls itself with
a different (e.g., smaller) arguments

• Solution is built up as you come back up the call stack

Recursion

1, 1, 2, 3, 5, 8, 13, 21, ...

Turtle graphics

Example
• Define a function called draw_triangle, which takes in the

length of a side (e.g., a float) as input, and draws a
triangle with equal length of each side.

• Can you create another function to draw a square with
length as input?

Recursive definition

•A _x_ is _y_ plus _#_ smaller _x_. unless it
is very small, in which case it is _z_.

Recursive case

Base case

Example: matryoshka

• What is a matryoshka?

a _x_ is _y_ plus _#_ smaller _x_. unless it is
very small, in which case it is _z_.

a matryoshka is a doll plus 1
smaller matryoshka. unless
it is very small, in which case
it is nothing.

Example: circle_drawing

• What is a circle_drawing?

a _x_ is _y_ plus _#_ smaller _x_. unless it is
very small, in which case it is _z_.

a circle_drawing is a circle plus
1 smaller circle_drawing. unless
it is very small, in which case it
is a filled circle

Example
• Draw a set of circles (each circle has radius 20 smaller

than the circle outside it), same bottommost point. Once
the radius is < 20, draw filled in circle

• Return how many circles are drawn.

Exercise
• a _x_ is _y_ plus _#_ smaller _x_. unless it is very small,

in which case it is _z_.
• A recursive_squares is a square
• plus 4 smaller recursive_squares
• of half the size
• centered at each of the corners of the large square

• unless it's very small in which case it's nothing

Bonus Exercise
• Define a function called recursive_squares, which

takes in three input parameters, which are x, y, and l
(floats). x and y are the coordinates of the bottom left
corner of the big square, and l is the length of each side
of the square. Recursively draw squares at the four
corners of the big square as long as l is greater than 10.
In each recursion, l will be shortened by half.

• Return how many squares are drawn.

