Lecture 10: Recursion

CS 51P October 9, 2023

Recursion

Objects containing smaller copies of itself

Define a base case when an answer can be returned
directly, e.g., doesn’t need to recursively call the function
itself anymore

Define a recursive case when the function calls itself with
a different (e.g., smaller) arguments

Solution is built up as you come back up the call stack

1,1,2,3,5,8,13, 21, ...

Turtle graphics

Example

- Define a function called draw_triangle, which takes in the
length of a side (e.g., a float) as input, and draws a
triangle with equal length of each side.

- Can you create another function to draw a square with
length as input?

Recursive definition

Recursive case

A
| |

A _x is_y plus_ # smaller x . unless it

IS very small, in which case itis z .

\ J
|

Base case

————
Example: matryoshka

a X is_y plus # smaller x . unlessitis
very small, in which case itis _z .

- What is a matryoshka?

a matryoshka is a doll plus 1

smaller matryoshka. unless

it is very small, in which case
it is nothing.

Example: circle _drawing

a X is_y plus # smaller x . unlessitis
very small, in which case itis _z .

- What is a circle_drawing?

a circle_drawing is a circle plus

1 smaller circle_drawing. unless
it is very small, in which case it
s a filled circle

Example

- Draw a set of circles (each circle has radius 20 smaller
than the circle outside it), same bottommaost point. Once
the radius is < 20, draw filled in circle

- Return how many circles are drawn.

Exercise

a X is_y plus_# smaller x . unlessitis very small,
iIn which case itis _z .
A recursive_squares is a square

plus 4 smaller recursive_squares
of half the size
centered at each of the corners of the large square

unless it's very small in which case it's nothing

Bonus Exercise

Define a function called recursive squares, which
takes in three input parameters, which are x, vy, and 1
(floats). x and y are the coordinates of the bottom left
corner of the big square, and 1 is the length of each side
of the square. Recursively draw squares at the four
corners of the big square as long as 1 is greater than 10.
In each recursion, 1 will be shortened by half.

Return how many squares are drawn.

