
CS 51P October 4, 2023

Lecture 9: Recursion

Recursion

What is recursion?
• Wikipedia: “Recursion occurs when a thing is
defined in terms of itself.”

• Object containing smaller copies of itself

Recursion in programming
• A function calls itself by passing a different arguments

• A powerful substitute for loops

• A technique for tackling a complicated problem by taking
one bite of the problem at a time
• Divide and conquer

• Short code and easy to understand

How many students in a row?
• Loops or iteration

• Walk around and count

• The first student looks back, counts and reports

How many students in a row?
• Don’t walk around

• Don’t look back

• Don’t rely on one person (minimize each student’s amount
of work)

• Don’t use indexing

How many students in a row?
• Recursion

• Ask behind “how many people are sitting behind you?”
• If no response, then answer 0
• If the student behind you says “let me check”, you will wait for their

response. The student behind you will recur to ask behind “how
many people are sitting behind you?”

• When a response (e.g., N) is received, respond (N + 1) to the
person who asks this question (e.g., the one in front of you)

Two main components of recursion
1. Base case:
• The simplest version of your problem that all other cases reduce to
• An occurrence that can be answered directly

• What is the base case of the demo?

2. Recursive case:
• The step where you break down more complex versions of the task

into smaller occurrences
• Cannot be answered directly

• What is the recursive case of the demo?

Recursion summary
• Reduce problem into repeated, smaller tasks of the same

form

• Recursion has 2 main parts: base case and recursive
case

• Solution is built up as you come back up the call stack

Example

• what is returned by mystery(3)? mystery(5)?
mystery(k)?

def mystery(n):
1 if n == 1:
2 return 1
3 else:
4 return n + mystery(n-1)

Exercise
• The number n factorial, n! in math notation, is defined as:
• n! = n * (n-1) * (n-2) * … * 2 * 1

• For example:
• 3! = 3 * 2 * 1 = 6
• 5! = 5 * 4 * 3 * 2 * 1 = 120
• 0! = 1 (by definition)

• Define a function called factorial, which takes in an
integer number n as input, and returns n!

Exercise
• Fibonacci numbers:
 1, 1, 2, 3, 5, 8, 13, 21, ...

• Define a function fib which takes a parameter n (an int)
and returns the nth Fibonacci number

