| ecture 9: Recursion

CS 51P October 4, 2023



Recursion




What is recursion?

- Wikipedia: “Recursion occurs when a thing is
defined in terms of itself.”

- Object containing smaller copies of itself




—————
Recursion in programming

- A function calls itself by passing a different arguments

- A powerful substitute for loops

- A technique for tackling a complicated problem by taking
one bite of the problem at a time

- Divide and conquer

- Short code and easy to understand



How many students in a row?

- Loops or iteration
- Walk around and count

- The first student looks back, counts and reports



How many students in a row?

- Don’t walk around
- Don’t look back

- Don’t rely on one person (minimize each student’'s amount
of work)

- Don’t use indexing



———————————
How many students in a row?

Recursion

Ask behind “how many people are sitting behind you?”

If no response, then answer 0

If the student behind you says “let me check”, you will wait for their
response. The student behind you will recur to ask behind “how
many people are sitting behind you?”

When a response (e.g., N) is received, respond (N + 1) to the
person who asks this question (e.g., the one in front of you)



Two main components of recursion

Base case:
The simplest version of your problem that all other cases reduce to
An occurrence that can be answered directly

What is the base case of the demo?

Recursive case:

The step where you break down more complex versions of the task
into smaller occurrences

Cannot be answered directly

What is the recursive case of the demo?



Recursion summary

- Reduce problem into repeated, smaller tasks of the same
form

- Recursion has 2 main parts: base case and recursive
case

- Solution is built up as you come back up the call stack



Example

def mystery(n) :
1 1f n ==

2 return 1

5 else:

/] return n + mystery(n-1)

- what is returned by mystery (3) ? mystery (5)7?
mystery (k) ?



Exercise

- The number n factorial, n! in math notation, is defined as:
n'=n*(nN-1)*(n-2)*...*2*1

- For example:
-3!1=3%2"1=6
-8!=5%4*3*2*1=120
- 0! =1 (by definition)

- Define a function called factorial, which takes in an
integer number n as input, and returns n!



Exercise

- Fibonacci numbers:
1,1,2,3,5,8,13, 21, ...

- Define a function £ib which takes a parameter n (an int)
and returns the nth Fibonacci number



