
CS 51P October 2, 2023

Lecture 8: Memory and the Stack

ASCII characters
Ch Dec Binary

! 33 00100001

" 34 00100010

35 00100011

$ 36 00100100

% 37 00100101

& 38 00100110

' 39 00100111

(40 00101000

) 41 00101001

* 42 00101010

+ 43 00101011

, 44 00101100

- 45 00101101

. 46 00101110

/ 47 00101111

0 48 00110000

Ch Dec Binary

1 49 00110001

2 50 00110010

3 51 00110011

4 52 00110100

5 53 00110101

6 54 00110110

7 55 00110111

8 56 00111000

9 57 00111001

: 58 00111010

; 59 00111011

< 60 00111100

= 61 00111101

> 62 00111110

? 63 00111111

@ 64 01000000

Ch Dec Binary

A 65 01000001

B 66 01000010

C 67 01000011

D 68 01000100

E 69 01000101

F 70 01000110

G 71 01000111

H 72 01001000

I 73 01001001

J 74 01001010

K 75 01001011

L 76 01001100

M 77 01001101

N 78 01001110

O 79 01001111

P 80 01010000

Ch Dec Binary

Q 81 01010001

R 82 01010010

S 83 01010011

T 84 01010100

U 85 01010101

V 86 01010110

W 87 01010111

X 88 01011000

Y 89 01011001

Z 90 01011010

[91 01011011

\ 92 01011100

] 93 01011101

^ 94 01011110

_ 95 01011111

` 96 01100000

Ch Dec Binary

a 97 01100001

b 98 01100010

c 99 01100011

d 100 01100100

e 101 01100101

f 102 01100110

g 103 01100111

h 104 01101000

i 105 01101001

j 106 01101010

k 107 01101011

l 108 01101100

m 109 01101101

n 110 01101110

o 111 01101111

p 112 01110000

Program Instructions
Python Code

def example1(n):
 x = n + 1
 return x

Binary Representation

10001101 01000111 00000001
11000011

101001011110101
010101010111010
101010101010000
111110101010101
011101010101011
101010101011010
101010101011101
010010000000011
010101111101010
101010101010111
010101011101010
001010100000111
100011101010111
101010110100000
110011101110110
010000111010101
011110001100110
101000110000010
101011001110011
101011110110101

Memory
• memory is a sequence of
bytes (8-bit segments)

• different "sections" of
memory are used for
different purposes

• code section stores your
programs

• the stack is used to store
variables to keep track of
functions

Th
e

St
ac

k
co

de

Stack Frames
• each time a function is called, that function call
gets its own section of the stack, known as a
stack frame or function frame

function name instruction counter

parameter variables

local variables

return value

draw variables as named boxes

line number of next statement
in the function body to execute
initially first line of body

ERASE WHOLE FRAME

Example
def add_one(n):
1 x = n + 1
2 return x

num = add_one(46)

add_one 1

n

return

46

None

x 47

2X

47

num 47

Exercise

def foo(a, b):
1 x = a + b
2 y = 2 * b
3 return 2 * x + y

n = foo(2, 3)

Control Flow and Nested Functions
def square(n):
1 if n <= 0:
2 return 0
3 else:
4 return n**2

def sum_squares(n):
5 sum = 0
6 for i in range(n):
7 sum += square(i)
8 return sum

def main():
9 total = sum_squares(2)

main()

Exercise
assume user enters

• "hello"
• "47”

• Draw the state of the
stack immediately
before Python
executes line 9

def is_pos_int(s):
1 if str.isdigit(s):
2 return int(s) > 0
3 else:
4 return False

def get_pos_int():
5 done = False
6 while not done:
7 s = input()
8 done = is_pos_int(s)
9 return s

def main():
10 x = get_pos_int()

main()

