Lecture 8: Memory and the Stack

CS 51P October 2, 2023

ASCI| characters
N e Ty Ty AT T

00100001 1 00110001 01000001 01010001 a 01100001

" 34 00100010 2 50 00110010 | B 66 01000010 | R 82 01010010 b 98 01100010
35 00100011 3 51 00110011 | C 67 01000011 S 83 01010011 c L) 01100011
$ 36 00100100 4 52 00110100 | D 68 01000100 | T 84 01010100 d 100 01100100
% 37 00100101 5 53 00110101 | E 69 01000101 U 85 01010101 e 101 01100101
& 38 00100110 6 54 00110110 | F 70 01000110 | V 86 01010110 f 102 01100110
' 39 00100111 7 55 00110111 | G 71 01000111 | W 87 01010111 g 103 01100111
(40 00101000 8 56 00111000 | H 72 01001000 | X 88 01011000 h 104 01101000
) 41 00101001 g 57 00111001 | 73 01001001 Y 89 01011001 [105 01101001
* 42 00101010 : 58 00111010 | J 74 01001010 | Z 90 01011010] 106 01101010
+ 43 00101011 ; 59 00111011 | K 75 01001011 [91 01011011 k 107 01101011
, 44 00101100 < 60 00111100 | L 76 01001100 \ 92 01011100 I 108 01101100
- 45 00101101 = 61 00111101 | M 77 01001101 | 93 01011101 m 109 01101101
46 00101110 > 62 00111110 | N 78 01001110 A 94 01011110 n 110 01101110

47 00101111 ? 63 00111111 | O 79 01001111 _ 95 01011111 o] 111 01101111

0 48 00110000 | @ 64 01000000 | P 80 01010000 ’ 96 01100000 p 112 01110000

Program Instructions

Python Code Binary Representation
def examplel(n): 10001101 01000111 00000001
X =n+1 11000011

return X

——————————————
Memory

101001011110101

_ 5 1010101010111010

- memory is a sequence of & |101010101010000
bytes (8_bit segments) () |111110101010101
_GC) 011101010101011

— | 101010101011010

- different "sections" of 101010101011101
memory are used for 010010000000011
dlﬂ:erent purposes 010101111101010
101010101010111

010101011101010

- code section stores your 001010100000111
prOgramS 100011101010111
101010110100000

110011101110110

- the stack is used to store 010000111010101
variables to keep track of o |ir 90010040
functions = 101000110000010
8 101011001110011

101011110110101

Stack Frames

each time a function is called, that function call
gets its own section of the stack, known as a
stack frame or function frame

line number of next statement
in the function body to execute
initially first line of body

Instruction counter

function name

parameter variables

¥ local variables

/ return value

draw variables as named boxes

Example

num | 47

def add_one(n):

1 X =n+1
2 return x

n |46

num = add one(46) X | 47

return | 47

Exercise

def foo(a, b):

1 X=a+b

2y =2%*D

3 return 2 * X + Yy

n = foo(2, 3)

Control Flow and Nested Functions

def square(n):
1 1f n <= ©O:
2 return 0

3 else:

4 return n**2

def sum_squares(n):

5 sum = 0

6 for i in range(n):
7 sum += square(i)
g return sum

def main():
9 total = sum_squares(2)

main()

Exercise

def is_pos_int(s): assume user enters
1 if str.isdigit(s): "hello”
2 return int(s) > © - hello
3 else: - "47

4 return False

def get pos_int(): - Draw the state of the
> done = False stack immediately

5 while not done:

7 s = input() before Python

8 done = is_pos_int(s) executes line 9

9 return s

def main():

10 x = get _pos_int()

main()

