
CS 51P September 20, 2023

Lecture 6: Functions

Review: Expressions
• Values

• 47
• "hello, world!\n"
• True

• Variables
• x
• i
• char

• Operations on values
or variables
• 1 * 2 * 3
• "hello" + "world
• x % 2

• Function calls
• int("32")
• print("hello, world")
• str.isdigit("12345678")

Functions
• A function is like a helper or assistant

• When you call a function, it will do a certain job for
you automatically.
• tips_calculator(meal_price, tips_rate)
• roofing_price(square_feet, unit_price)

• Benefits:
• Automate the operations
• Reusable

Defining Functions

• How to define a function?

def tips_calculator(meal_price, tips_rate):
 tips = meal_price * tips_rate
 return tips

header
body

input parameters

return values

Don’t forget the indentation!

def roofing_price(square_feet, unit_price):
 total_price = square_feet * unit_price
 return total_price

price = roofing_price(2000, 10)
print(”The estimated roofing price is ” +
str(price)”)

Calling Functions

• How to use or call a function?

Function Evaluation
• Functions calls are expressions, i.e. they evaluate to a value
• int("47") evaluates to 47
• str.isdigit("hello") evaluates to False
• input() evaluates to the string the user enters

• We can store the value that an expression evaluates to in a
variable
• num = int("47")
• is_pos_int = str.isdigit("hello")
• input_str = input()

• keyword return defines a value for the function to evaluate to

Exercise
• Define a function that takes in two numbers as input, e.g.,

num1 and num2, and then return the average value of
these two numbers. Practice to call/use this function.

• Define a function that takes in two numbers as input, e.g.,
num1 and num2, and then return the absolute value of
deducting num1 by num2 (e.g., |num1 – num2|). Practice
to call/use this function.

Functions Summary
• A function is a named sequence of instructions that

performs some useful operation

• When you call a function, the sequence of instructions
executes.

• A function call is an expression (it evaluates to a value)

• How can you define your own functions?
• How do you use (call) your own functions?
• When should you define a function?

• There's some useful operation that you want to do over and
over and over

Revisit return
• function immediately terminates ("returns") when a return

statement is executed

• if a function terminates without executing a return statement,
it evaluates to the default value None (type is NoneType)

def tips_calculator(meal_price, tips_rate):
 tips = meal_price * tips_rate

print(tips_calculator(20, 0.18))

def add(num1, num2):
 result = 0
 return result
 result = num1 + num2

More about return
• The return value can be int, float, Boolean, str, and etc.

• Sometimes, we don’t need to return anything

• For example, print out a pyramid of “*” based on the given
parameter, e.g., pyramid(4) will display a pyramid as
below

 *
 **

Exercise
• Define a function called exp that takes a number n (an
int or float) and a number p (an int or float) as
parameters and returns the value 𝑛!

Exercise

9::::=======
|::::=======
|===========
|===========
|
|
|

• Define a function print_flag() that prints the
following image:

