
CS 51P January 27, 2020

Lecture 3: Operators, Expressions,

Types

State

• State is a fundamental programming concept

• State means you can

• Save the meaning of something by giving it a name

• Use (retrieve) the meaning of something by naming it

• Combine these two actions ("operations") to build more complicated

meaning

X = 2 # Read as "Assign 2 to X"

Y = 1 # Read as "Assign 1 to Y"

Z = X + Y # ???

print(X,Y,Z)

visualize

http://pythontutor.com/visualize.html

State

• More State assignment (visualize)

message = 'And now for something completely different'

n = 17

pi = 3.14159

http://pythontutor.com/visualize.html

An Aside on Programming

• Programming is the manipulation of symbols

• Syntax defines the rules for combining symbols

• Semantics defines the "meaning" of a program

• A program can be syntactically wrong

• A syntactically correct program can be semantically wrong

• Debugging is a process for fixing syntax and semantic

errors

State

• State is a fundamental programming

concept

• State is memory – a way to store

information

• State is created/modified by a

sequence of statements

• This is a serial operation

• There is an order

• Retrieval at k depends upon an earlier store

• State requires a name

State

• Programs start from the topmost

line

• First line is executed

• Then the second line is executed

• Then ...

Example (Visualize)

x = 10 # S1

y = 5 # S2

z = x + y # S3

print(z) # S4

http://pythontutor.com/visualize.html

State: Class Exercise (visualize)

• Label the states and either give the output or identify

the bug

• If there's a bug, try to identify the bug and then fix it

x = 1

w = 3 + y + x

print(w)

y = 2

http://pythontutor.com/visualize.html

State: Class Exercise

x = 1

y = 2

w = 3 + y + x

print(w)

y = 2

x = 1

w = 3 + y + x

print(w)

x = 1

y = 2

z = y + x

w= z + 3

print(w)

• Treat this a three separate programs

• Show what the "state" consists of after

each statement

• What is printed ?

Class Exercise

• Hal, Sue, Abe, and Lou have landed on a desert island

are in search of coconuts

• Hal finds 10

• Sue finds twice as many as Hal

• Abe finds one-tenth as many as Hal

• Lou finds as many as Sue and Abe together

• Write code that finds the total number of coconuts.

Hal = 10

Your code

print(total)

Statement (visualize)

• Syntax (Assignment)

• Semantics

• Puts the value of expression in the location with variable name

variable = expression

x3 = 4

cat = 10 + x3

x3 = x3*2

print(x3)

http://pythontutor.com/visualize.html

Rules for "naming"

• Names can be as long as

you like and can consist of

letters, numbers and '_'

• But they can't start with a

number

• Some names are reserved,

e.g.

• False, True

• While, if

• Using illegal names will

cause a "syntax error"

>>> 76trombones = 'big parade'
File "<stdin>", line 1
76trombones = 'big parade'
^
SyntaxError: invalid syntax
>>> more@ = 1000
File "<stdin>", line 1
more@ = 1000
^
SyntaxError: invalid syntax

Statements and Expressions

• A statement is a unit of code that has an effect

• An expression is a combination of values, variables, and

operators

>>> n = 17 # assign 17 to 'n'

>>> print(n) # print the value of 'n'

>>> 42

42

>>> n

17

>>> n + 25
42

Debugging Redux

• There are three general categories of errors:

• Syntax error : a violation of the structure of a program

• Runtime error: an error that appears when the program executes

• Semantic error: a problem relating to the meaning of a program

• Debugging is the process of finding and crushing these

errors. Typically, it is necessary to resolve these errors in

the order given above

Syntax errors

x = (1 + 3)

y = 8)

File "<ipython-input-1-3ccc20f90364>", line 2

y = 8)

^

SyntaxError: invalid syntax

Runtime Errors

x = 1

y = x + z

z = 2

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'z' is not defined

Semantic Errors

• Semantic errors are typically the hardest to identify and

find the root cause. Often, we use systematic testing to

try to eliminate semantic errors

radius = 3

area_of_circle = radius**2

Types

• Numbers
• Integers : -1, 400, 0, 24, …

• Floats: 0.32, -1.141, 3.14159

• Strings
• 'b', '-1', 'hello_kitty'

• "'h'", '(1+2) + "dog"'

• ""

• ''

>>> type(-1)

<class 'int'>

>>> type(0.32)

<class 'float'>

>>> type('')

<class 'str'>

>>> type("'h'")
<class 'str'>

>>> type(input("give it to me: "))

give it to me: 3.14159

<class 'str'>

type(int("33"))

<class 'int'>

>>> type(float("33"))
<class 'float'>

Integers, Floats, and Strings

• These are the three types we will use initially

• A type means:

• Syntax – written structure

• Semantics – meaning (how to interpret it)

• Operations – what can be done with it

Integers

• Syntax

• 0

• All other integers must start

with 1,2,..,9 followed by 0-9 any

number of times

• An integer may be prefixed with

a '-'

• Semantics (what you

learned in grade school)

• Operations

• Addition

• Syntax: x + y or (x + y)

• Semantics: you got this one

Integers

print(0)

print(-1)

print(12200)

print(01)

File "<ipython-input-1-a7229a104295>", line 4

print(01)

^

SyntaxError: invalid token

print(123+)

File "<ipython-input-1-55b6482b84a9>", line 1

print(123+)

^

SyntaxError: invalid syntax

Strings

• Syntax

• Must both start and end with either " or '

• Empty string "" or ''

• Inside quotes – anything from key board (quotes are a special

case)

• Semantics : it's just text !

• Operations:

• Add: "ab" + "cd" creates the string "abcd" -- addition is

concatenation

• Multiply: integer * string or string * integer

• 3* 'cat' creates 'catcatcat'

• 'cat' * 3 creates 'catcatcat' "Mi" + 2*"ssi" + "ppi"

"ba" + 2*"na"

