Lecture 3: Operators, Expressions,
Types
CS51P January 27, 2020

State

- State Is a fundamental programming concept

- State means you can
- Save the meaning of something by giving it a name
- Use (retrieve) the meaning of something by naming it

- Combine these two actions ("operations") to build more complicated
meaning

X =2 # Read as "Assign 2 to X"
Y =1 #Read as "Assign 1 to Y"
Z=X+Y #7277

print(X,Y,2)

visualize

http://pythontutor.com/visualize.html

————————
State

- More State assignment (visualize)

message = 'And now for something completely different’
n=17

pi = 3.14159

http://pythontutor.com/visualize.html

An Aside on Programming

Programming is the manipulation of symbols
Syntax defines the rules for combining symbols
Semantics defines the "meaning" of a program

A program can be syntactically wrong
A syntactically correct program can be semantically wrong

Debugging is a process for fixing syntax and semantic
errors

State

- State Is a fundamental programming
concept S state one

- State is memory — a way to store So state two
Information S; state three

- State Is created/modified by a
sequence of statements
- This is a serial operation Sk state k
- There is an order
- Retrieval at k depends upon an earlier store

- State requires a name

State
o IIiDr:Zgrams start from the topmost S, state one
So state two

- First line I1s executed
- Then the second line is executed
- Then ...

Ss state three

Example (Visualize)

x=10 #8S1
y=5 #S2
Z=X+y#S3
print(z) # S4

http://pythontutor.com/visualize.html

State: Class Exercise (visualize)

- Label the states and either give the output or identify
the bug

- If there's a bug, try to identify the bug and then fix it

S1 state one
x=1 So state two
i ACAR S, state three
print(w)
y=2

S state k

http://pythontutor.com/visualize.html

State: Class Exercise

x=1 » Treat this a three separate programs
y=2 « Show what the "state" consists of after
w=3+Yy+X each statement

print(w) What s printed ?

y=2

x=1

w=3+Yy+X

print(w)

Xx=1

y =2

Z=Yy+X

w=2z+3

Class Exercise

Hal, Sue, Abe, and Lou have landed on a desert island
are in search of coconuts

Hal finds 10

Sue finds twice as many as Hal

Abe finds one-tenth as many as Hal

Lou finds as many as Sue and Abe together

Write code that finds the total number of coconuts.

Hal = 10

Your code

print(total)

————————
Statement (visualize)

- Syntax (Assignment)

variable = expression

- Semantics

- Puts the value of expression in the location with variable name

X3 =4

cat =10 + x3
X3 = X3*2
print(x3)

http://pythontutor.com/visualize.html

Rules for "naming"

Names can be as long as
you like and can consist of
letters, numbers and '

But they can't start with a
number

Some names are reserved,
e.g.

False, True

While, if
Using illegal names will
cause a "syntax error”

>>> 76trombones = 'big parade'
File "<stdin>", line 1
76trombones = 'big parade'

/AN

SyntaxError: invalid syntax
>>>more@ = 1000

File "<stdin>", line 1
more@ = 1000

7AN

SyntaxError:invalid syntax

Statements and Expressions

A statement is a unit of code that has an effect

>>>n =17 # assign 17 to 'n’
>>> print(n) # print the value of 'n'

An expression is a combination of values, variables, and
operators

>>> 42

42

>>> N

17

>>>n + 25
42

Debugging Redux

There are three general categories of errors:

Syntax error : a violation of the structure of a program
Runtime error: an error that appears when the program executes
Semantic error: a problem relating to the meaning of a program

Debugging is the process of finding and crushing these
errors. Typically, it iIs necessary to resolve these errors in
the order given above

Syntax errors

Xx=(1+23)
y =8)

File "<ipython-input-1-3ccc20f90364>", line 2
y =8)
N\

SyntaxError: invalid syntax

Runtime Errors

N < X
I
N X
+
N

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'z' is not defined

Semantic Errors

- Semantic errors are typically the hardest to identify and
find the root cause. Often, we use systematic testing to
try to eliminate semantic errors

radius = 3
area_of circle = radius**2

>>> type(-1)

TypeS <class 'int'>

>>> type(0.32)

Numbers <class 'float">
Integers: -1, 400, 0, 24, ...
Floats: 0.32,-1.141, 3.14159 >>> type(")

S trings <class 'str'>
'b', '-1', Ihe”O_kitty' >>> type("'h™)
lllhlll’ l(l+2) + Ildoglll <CIaSS lStrl>

" >>> type(input("give it to me: "))
give it to me: 3.14159
<class 'str'>

type(int("33"))
<class 'int'>

>>> type(float("33"))
<class 'float">

Integers, Floats, and Strings

- These are the three types we will use initially

- Atype means:
- Syntax — written structure
- Semantics — meaning (how to interpret it)
- Operations — what can be done with it

I nteg e rS (non_zero_integer)

(zero)
(digit)
. Syntax (integer)

0 (signed_integer)

- All other integers must start
with 1,2,..,9 followed by 0-9 any
number of times

- An integer may be prefixed with
a I_I
- Semantics (what you
learned in grade school)

- Operations
- Addition
- Syntax: x+y or (X +vy)
- Semantics: you got this one

1|2/3|4|5/6/7/8|9
0

(zero)|(non_zero_integer)
(zero)|(non_zero_integer) (digit)*
[-]* (integer)

Integers

print(0)
print(-1)
print(12200)
print(01)

File "<ipython-input-1-a7229a104295>", line 4

print(01)

SyntaxError: invalid token

print(123+)

File "<ipython-input-1-55b6482b84a9>", line 1

print(123+)

SyntaxError: invalid syntax

(non_zero_integer)
(zero)

(digit)

(integer)

)

(signed_integer

1/2(3(4/5/6|7|8|9

0

(zero)|(non_zero_integer)
(zero)|(non_zero_integer) (digit)*
[-]* (integer)

Strings

- Syntax
- Must both start and end with either " or"
- Empty string"" or "
- Inside quotes — anything from key board (quotes are a special
case)

- Semantics : It's just text !

- Operations:
- Add: "ab" + "cd" creates the string "abcd" -- addition is
concatenation
- Multiply: integer * string or string * integer
- 3* 'cat’ creates 'catcatcat’

- 'cat' * 3 creates 'catcatcat' "Mi" + 2*"ssi" + "ppl"
llba|| + 2*||na||

