What order would this variant visit the states?

```python
def search(state):
    if state.is_goal():
        return state
    else:
        for s in state.next_states():
            result = search(s)
            if result != None:
                return result

return None
```

1, 2, 5
What order would this variant visit the states?

```python
def search(state):
    if state.is_goal():
        return state
    else:
        for s in state.next_states():
            result = search(s)
            if result != None:
                return result
    return None
```

1, 2, 5, 3, 6, 9, 7, 8

What search algorithm is this?
What order would this variant visit the states?

```python
def search(state):
    if state.is_goal():
        return state
    else:
        for s in state.next_states():
            result = search(s)
            if result != None:
                return result
    return None
```

1, 2, 5, 3, 6, 9, 7, 8

DFS! Where’s the stack?
One last DFS variant

```python
def search(state):
    if state.is_goal():
        return state
    else:
        for s in state.next_states():
            result = search(s)
            if result != None:
                return result
    return None

def dfs(state):
    if state.is_goal():
        return [state]
    else:
        result = []
        for s in state.next_states():
            result += dfs(s)
        return result
```

How is this different?
One last DFS variant

```
def search(state):
    if state.is_goal():
        return state
    else:
        for s in state.next_states():
            result = search(s)
            if result != None:
                return result
    return None

def dfs(state):
    if state.is_goal():
        return [state]
    else:
        result = []
        for s in state.next_states():
            result += dfs(s)

    return result
```

Returns ALL solutions found, not just one
N-queens problem

Place \(N \) queens on an \(N \) by \(N \) chess board such that none of the \(N \) queens are attacking any other queen.

Solution(s)?
N-queens problem

Place N queens on an N by N chess board such that none of the N queens are attacking any other queen.
N-queens problem

Place N queens on an N by N chess board such that none of the N queens are attacking any other queen.

Solution(s)?
N-queens problem

Place N queens on an N by N chess board such that none of the N queens are attacking any other queen.

How do we solve this with search:

What is a state?

What is the start state?

What is the goal?

How do we transition from one state to the next?
Search algorithm

add the start state to to_visit

Repeat

- take a state off the to_visit list
- if it’s the goal state
 - we’re done!
- if it’s not the goal state
 - Add all of the next states to the to_visit list

Any problem that we can define these three things can be plugged into the search algorithm!
N queens problem

http://en.wikipedia.org/wiki/Eight_queens_puzzle