CS051A
INTRO TO COMPUTER SCIENCE WITH TOPICS IN AI

17: Search

Alexandra Papoutsaki
she/her/hers
Lectures

Zilong Ye
he/him/his
Labs

03-29-2023
Lecture 17: Search

- Search
What is AI?

<table>
<thead>
<tr>
<th>Think like a human</th>
<th>Think rationally</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive Modeling</td>
<td>Logic-based Systems</td>
</tr>
<tr>
<td>Act like a human</td>
<td>Act rationally</td>
</tr>
<tr>
<td>Turing Test</td>
<td>Rational Agents</td>
</tr>
</tbody>
</table>
What is AI?

<table>
<thead>
<tr>
<th>Think like a human</th>
<th>Think rationally</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive Modeling</td>
<td>Logic-based Systems</td>
</tr>
<tr>
<td>Act like a human</td>
<td>Act rationally</td>
</tr>
<tr>
<td>Turing Test</td>
<td>Rational Agents</td>
</tr>
</tbody>
</table>

Next couple of weeks
Solve the maze!
Solve the maze!
Solve the maze!

How did you figure it out?
Solve the maze!
One approach

What now?
One approach

Three choices
One approach

Pick one!
One approach

What now?
One approach

Still three options!
One approach

Still three options!

Which would you explore/pick?
One approach

Most people go down a single path until they realize that it’s wrong
One approach

Keep exploring
One approach

What now?
One approach

Keep exploring
One approach

Are we stuck?
One approach

Are we stuck?

No. Yellow positions are just possible options we haven’t explored.
One approach
One approach

How do we know not to go here?
One approach

We have to be careful and keep track of where we’ve been in case we loop back to a previously visited location.
One approach

What now?
One approach

Keep exploring
One approach

What now?
One approach

Keep exploring
One approach

Keep exploring
One approach
Search problems

What information do we need to figure out a solution?
Search problems

‣ Where to start.

‣ Where to finish (goal).

‣ What the “world” (in this case a maze) looks like.

‣ We’ll define the world as a collection of discrete states.

‣ States are connected if we can get from one state to another by taking a particular action.

‣ The set of all possible states is called the state space.
State space example

How many more states are there?
State space example
State space example
State space example

Now what?
State space example
State space example

Now what?
State space example
Could we have found the exit any other way?
Search algorithm

Keep track of a list of states that we *could* visit; we’ll call it `to_visit`.

General idea:

- take a state off the `to_visit` list
- if it’s the goal state
 - we’re done!
- if it’s not the goal state
 - Add all of the next possible states to the `to_visit` list
- repeat
- take a state off the to_visit list
- if it’s the goal state
 we’re done!
- if it’s not the goal state
 Add all of the next possible states to
 the to_visit list
- repeat

How do we start?
- take a state off the to_visit list
- if it’s the goal state
 we’re done!
- if it’s not the goal state
 Add all of the next possible states to the to_visit list
- repeat

Add start to to_visit
- take a state off the to_visit list
- if it’s the goal state
 we’re done!
- if it’s not the goal state
 Add all of the next possible states to the to_visit list
- repeat
- take a state off the to_visit list
- if it’s the goal state
 we’re done!
- if it’s not the goal state
 Add all of the next possible states to
 the to_visit list
- repeat

Is it a goal state?
- take a state off the to_visit list
- if it’s the goal state
 we’re done!
- if it’s not the goal state
 Add all of the next possible states to the to_visit list
- repeat
- take a state off the to_visit list
- if it’s the goal state
 - we’re done!
- if it’s not the goal state
 - Add all of the next possible states to the to_visit list
- repeat
- take a state off the to_visit list
- if it’s the goal state
 we’re done!
- if it’s not the goal state
 Add all of the next possible states to
 the to_visit list
- repeat
- take a state off the to_visit list
- if it’s the goal state
 we’re done!
- if it’s not the goal state
 Add all of the next possible states to
 the to_visit list
- repeat

Dead-end. What do we do now?
- take a state off the to_visit list
- if it’s the goal state
 we’re done!
- if it’s not the goal state
 Add all of the next possible states to the to_visit list
- repeat

to_visit list keeps track of where to go next, i.e. the states we know about but haven’t explored
- take a state off the to_visit list
- if it’s the goal state
 - we’re done!
- if it’s not the goal state
 - Add all of the next possible states to the to_visit list
- repeat

Is it a goal state?
- take a state off the to_visit list
- if it’s the goal state
 - we’re done!
- if it’s not the goal state
 - Add all of the next possible states to the to_visit list
- repeat
- take a state off the to_visit list
- if it’s the goal state
 we’re done!
- if it’s not the goal state
 Add all of the next possible states to the to_visit list
- repeat

Is it a goal state?
- take a state off the to_visit list
- if it’s the goal state
 we’re done!
- if it’s not the goal state
 Add all of the next possible states to
 the to_visit list
- repeat
- take a state off the to_visit list
- if it’s the goal state
 - we’re done!
- if it’s not the goal state
 - Add all of the next possible states to the to_visit list
- repeat
- take a state off the to_visit list
- if it’s the goal state
 we’re done!
- if it’s not the goal state
 Add all of the next possible states to
 the to_visit list
- repeat
- take a state off the to_visit list
- if it’s the goal state
 we’re done!
- if it’s not the goal state
 Add all of the next possible states to
 the to_visit list
- repeat

How was the to_visit list
organized in this example, i.e., what order?
- take a state off the to_visit list
- if it’s the goal state
 we’re done!
- if it’s not the goal state
 Add all of the next possible states to
 the to_visit list
- repeat

It’s a stack! (LIFO)
- take a state off the `to_visit` list
- if it’s the goal state
 we’re done!
- if it’s not the goal state
 Add all of the next possible states to
 the `to_visit` list
- repeat

What would happen if we used a queue?
Search algorithms

- add the start state to to_visit
- Repeat
 - take a state off the to_visit list
 - if it’s the goal state
 - we’re done!
 - if it’s not the goal state
 - Add all of the next possible states to the to_visit list
Search algorithms

- add the start state to to_visit
- Repeat
 - take a state off the to_visit list
 - if it’s the goal state
 - we’re done!
 - if it’s not the goal state
 - Add all of the next possible states to the to_visit list
- Depth first search (DFS): to_visit is a stack
- Breadth first search (BFS): to_visit is a queue
What order will BFS and DFS visit the states assuming states are added to to_visit left to right?

- add the start state to to_visit
- Repeat
 - take a state off the to_visit list
 - if it’s the goal state
 - we’re done!
 - if it’s not the goal state
 - Add all of the next states to the to_visit list
- Depth first search (DFS): to_visit is a stack
- Breadth first search (BFS): to_visit is a queue
What order will BFS and DFS visit the states?

- DFS:
What order will BFS and DFS visit the states?

- DFS: 1

![Diagram of a tree structure with nodes labeled 1 to 9 and an arrow indicating the path taken by DFS. The stack is labeled as 'STACK'.]
What order will BFS and DFS visit the states?

- DFS: 1, 4
What order will BFS and DFS visit the states?

- DFS: 1, 4, 3
What order will BFS and DFS visit the states?

- **DFS**: 1, 4, 3
What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8
What order will BFS and DFS visit the states?

- **DFS:** 1, 4, 3, 8, 7
What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8, 7, 6
What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8, 7, 6
What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8, 7, 6, 9

The diagram shows the stack (STACK) and the order of states visited by DFS.
What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8, 7, 6, 9, 2
What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8, 7, 6, 9, 2
What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8, 7, 6, 9, 2, 5
What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8, 7, 6, 9, 2, 5
- BFS:

![BFS and DFS diagram]
What order will BFS and DFS visit the states?

- **DFS**: 1, 4, 3, 8, 7, 6, 9, 2, 5
- **BFS**: 1
What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8, 7, 6, 9, 2, 5
- BFS: 1
What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8, 7, 6, 9, 2, 5
- BFS: 1, 2
What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8, 7, 6, 9, 2, 5
- BFS: 1, 2
What order will BFS and DFS visit the states?

- **DFS:** 1, 4, 3, 8, 7, 6, 9, 2, 5
- **BFS:** 1, 2, 3
What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8, 7, 6, 9, 2, 5
- BFS: 1, 2, 3

```
4 5 6 7 8
```

```
1
2
3
4
5
6
7
8
9
```
What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8, 7, 6, 9, 2, 5
- BFS: 1, 2, 3, 4
What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8, 7, 6, 9, 2, 5
- BFS: 1, 2, 3, 4, 5
What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8, 7, 6, 9, 2, 5
- BFS: 1, 2, 3, 4, 5
Homework

- Assignment 8