13: Perceptron learning and backpropagation
Lecture 13: Perceptron learning and back propagation

- Perceptron learning
- Back propagation
Artificial Neural Networks - Our approximation
Strength of signal

- w is the strength of signal sent between A and B.
- If A fires and w is positive, then A stimulates B.
- If A fires and w is negative, then A inhibits B.
Firing a neuron

- A given neuron has many, many connecting, input neurons.
- If a neuron is stimulated enough, then it also fires.
- How much stimulation is required is determined by its threshold.
A single neuron/perceptron

Each input contributes:
\[x_i \times w_i \]

\[\sum_{i} \sum_{w_i} w_i \times x_i \]

threshold function
Training neural networks

- start with some initial weights and thresholds
- show examples repeatedly to NN
- update weights/thresholds by comparing NN output to actual output
Perceptron learning algorithm

- Repeat until you get all examples right:
 - For each “training” example:
 - Calculate current prediction on example
 - If wrong:
 - Update weights and threshold towards getting this example correct.
Perceptron learning

Threshold of 1

Predicted: ?
Actual: 1
Perceptron learning

Weighted sum is 0.5, which is not equal or larger than the threshold

What could we adjust to make it right?
Perceptron learning

This weight doesn’t matter, so don’t change
Perceptron learning

Could increase any of these weights
Perceptron learning

Threshold of 1

Could decrease the threshold
Perceptron update rule

- If wrong:
 - Update weights and threshold towards getting this example correct

\[w_i = w_i + \Delta w_i \]

\[\Delta w_i = \lambda \times (\text{actual} - \text{predicted}) \times x_i \]
Perceptron learning

\[w_i = w_i + \Delta w_i \]
\[\Delta w_i = \lambda \cdot (\text{actual} - \text{predicted}) \cdot x_i \]

What does this do in this case?
Perceptron learning

\[w_i = w_i + \Delta w_i \]

\[\Delta w_i = \lambda \times (\text{actual} - \text{predicted}) \times x_i \]

causes us to increase the weights!
Perceptron learning

\[w_i = w_i + \Delta w_i \]
\[\Delta w_i = \lambda \times (\text{actual} - \text{predicted}) \times x_i \]

What if predicted = 1 and actual = 0?
Perceptron learning

\[w_i = w_i + \Delta w_i \]
\[\Delta w_i = \lambda \times (\text{actual} - \text{predicted}) \times x_i \]

We’re over the threshold, so want to decrease weights: actual - predicted = -1
Perceptron learning

\[w_i = w_i + \Delta w_i \]
\[\Delta w_i = \lambda \times (\text{actual} - \text{predicted}) \times x_i \]

What does this do?
Perceptron learning

\[w_i = w_i + \Delta w_i \]
\[\Delta w_i = \lambda \times (\text{actual} - \text{predicted}) \times x_i \]

Only adjust those weights that actually contributed!
Perceptron learning

\[
w_i = w_i + \Delta w_i
\]

\[
\Delta w_i = \lambda \cdot (\text{actual} - \text{predicted}) \cdot x_i
\]

What does this do?
Perceptron learning

\[w_i = w_i + \Delta w_i \]

\[\Delta w_i = \lambda \times (\text{actual} - \text{predicted}) \times x_i \]

“learning rate”: value between 0 and 1 (e.g., 0.1) adjusts how abrupt the changes are to the model
Perceptron learning

\[w_i = w_i + \Delta w_i \]
\[\Delta w_i = \lambda \times (\text{actual} - \text{predicted}) \times x_i \]

What about the threshold?
Perceptron learning

\[1 \text{ if } \sum_{i=1}^{3} w_i x_i \geq t \]

\[1 \text{ if } w_4 + \sum_{i=1}^{3} w_i x_i \geq 0 \]
Perceptron learning

1 if \(\sum_{i=1}^{3} w_i x_i \geq t \)

1 if \(w_4 + \sum_{i=1}^{3} w_i x_i \geq 0 \)

Equivalent when \(w_4 = -t \)
Perceptron learning algorithm

- Initialize weights of the model randomly
- Repeat until you get all examples right:
 - For each “training” example (in a random order):
 - Calculate current prediction on example
 - If wrong:
 - $w_i = w_i + \lambda \times (actual - predicted) \times x_i$
Perceptron learning

\[\lambda = 0.1 \]

initialize with random weights
Perceptron learning

\[\lambda = 0.1 \]

<table>
<thead>
<tr>
<th></th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_1 \text{ and } x_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Input \(x_1 \):
- \(W_1 = 0.2 \)

Input \(x_2 \):
- \(W_2 = 0.5 \)

Bias \(1 \):
- \(W_3 = 0.1 \)
Perceptron learning

\[\lambda = 0.1 \]

if wrong:

\[w_i = w_i + \lambda \times (\text{actual} - \text{predicted}) \times x_i \]

Right or wrong?
Perceptron learning

\[w_i = w_i + \lambda \cdot (\text{actual} - \text{predicted}) \cdot x_i \]

\[\lambda = 0.1 \]

if wrong:

\[\begin{array}{ccc}
 x_1 & x_2 & x_1 \text{ and } x_2 \\
 0 & 0 & 0 \\
 0 & 1 & 0 \\
 1 & 0 & 0 \\
 1 & 1 & 1 \\
\end{array} \]
Perceptron learning

\[\lambda = 0.1 \]

if wrong:

\[w_i = w_i + \lambda \times (\text{actual} - \text{predicted}) \times x_i \]

\[
\begin{array}{ccc}
\text{x}_1 & \text{x}_2 & \text{x}_1 \text{ and } \text{x}_2 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
\end{array}
\]

new weights?
Perceptron learning

\[\lambda = 0.1 \]

if wrong:

\[w_i = w_i + \lambda \times (\text{actual} - \text{predicted}) \times x_i \]

decrease (0-1=-1) all non-zero \(x_i \) by 0.1
Perceptron learning

\[w_i = w_i + \lambda \times (\text{actual} - \text{predicted}) \times x_i \]

\(\lambda = 0.1 \)

If wrong:

- Decrease (0-1=-1) all non-zero \(x_i \) by 0.1
Perceptron learning

\[\lambda = 0.1 \]
if wrong:

\[w_i = w_i + \lambda \times (\text{actual} - \text{predicted}) \times x_i \]

Right or wrong?
Perceptron learning

\[\lambda = 0.1 \]

if wrong:

\[w_i = w_i + \lambda \times (\text{actual} - \text{predicted}) \times x_i \]

Right. No update!
Perceptron learning

\[\lambda = 0.1 \]

if wrong:

\[w_i = w_i + \lambda \times (\text{actual} - \text{predicted}) \times x_i \]

Right or wrong?
Perceptron learning

$$\lambda = 0.1$$

if wrong:

$$w_i = w_i + \lambda \times (\text{actual} - \text{predicted}) \times x_i$$
Perceptron learning

\[\lambda = 0.1 \]

if wrong:

\[w_i = w_i + \lambda \cdot (\text{actual} - \text{predicted}) \cdot x_i \]
Perceptron learning

\(\lambda = 0.1 \)

if wrong:

\[w_i = w_i + \lambda \times (\text{actual} - \text{predicted}) \times x_i \]

\[
\begin{array}{ccc}
 x_1 & x_2 & x_1 \text{ and } x_2 \\
 0 & 0 & 0 \\
 0 & 1 & 0 \\
 1 & 0 & 0 \\
 1 & 1 & 1 \\
\end{array}
\]

decrease (0-1=-1) all non-zero \(x_i \) by 0.1
Perceptron learning

\[\lambda = 0.1 \]

if wrong:

\[w_i = w_i + \lambda \times (\text{actual} - \text{predicted}) \times x_i \]
Perceptron learning

\[\lambda = 0.1 \]

if wrong:

\[w_i = w_i + \lambda \times (\text{actual} - \text{predicted}) \times x_i \]

Right. No update!
Perceptron learning

\[\lambda = 0.1 \]

if wrong:

\[w_i = w_i + \lambda \times (\text{actual} - \text{predicted}) \times x_i \]

Right or wrong?
Perceptron learning

\(\lambda = 0.1 \)

if wrong:

\[
\begin{align*}
 w_i &= w_i + \lambda \cdot (\text{actual} - \text{predicted}) \cdot x_i \\
 W_1 &= 0.1 \\
 W_2 &= 0.4 \\
 W_3 &= -0.1 \\
 \text{sum} &= 0.3: \text{output 1}
\end{align*}
\]
Perceptron learning

\[\lambda = 0.1 \]

if wrong:

\[w_i = w_i + \lambda * (\text{actual} - \text{predicted}) * x_i \]

\[
\begin{array}{c|c|c|c}
 x_1 & x_2 & x_1 \text{ and } x_2 \\
\hline
 0 & 0 & 0 \\
 0 & 1 & 0 \\
 1 & 0 & 0 \\
 1 & 1 & 1 \\
\end{array}
\]

decrease (0-1=-1) all non-zero \(x_i \) by 0.1
Perceptron learning

\[\lambda = 0.1 \]

if wrong:

\[w_i = w_i + \lambda \ast (\text{actual} - \text{predicted}) \ast x_i \]

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
\end{array}
\]
Perceptron learning

$$\lambda = 0.1$$

if wrong:

$$w_i = w_i + \lambda \times (\text{actual} - \text{predicted}) \times x_i$$

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>$x_1 \text{ and } x_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Right. No update!
Perceptron learning

\[x_1 \quad x_2 \quad x_1 \text{ and } x_2 \]

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\(\lambda = 0.1 \)

if wrong:

\[w_i = w_i + \lambda \times (\text{actual} - \text{predicted}) \times x_i \]

Are they all right?
Perceptron learning

\[\lambda = 0.1 \]

if wrong:

\[w_i = w_i + \lambda \times (\text{actual} - \text{predicted}) \times x_i \]
Perceptron learning

\[\lambda = 0.1 \]

if wrong:

\[w_i = w_i + \lambda \times (\text{actual} - \text{predicted}) \times x_i \]

Table:

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_1 \text{ and } x_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Diagram:

- Input 0: \(W_1 = 0.1 \)
- Input 1: \(W_2 = 0.2 \)
- Input 1: \(W_3 = -0.3 \)

Sum: \(-0.1\): output 0

Are they all right?
Perceptron learning

\[\lambda = 0.1 \]

if wrong:

\[w_i = w_i + \lambda \times (\text{actual} - \text{predicted}) \times x_i \]

We've learned AND!
Perceptron learning algorithm

- A few missing details, but not much more than this.
- Keeps adjusting weights as long as it makes mistakes.
- If the training data is linearly separable, the perceptron learning algorithm is guaranteed to converge to the “correct” solution (where it gets all examples right).
Lecture 13: Perceptron learning and back propagation

- Perceptron learning
- Back propagation
Linearly separable

- A data set is linearly separable if you can separate one example type from the other with a line.

- Which of these are linearly separable?

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>$x_1 \text{ and } x_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0 □</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0 □</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0 □</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1 □</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>$x_1 \text{ or } x_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0 □</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1 □</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1 □</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1 □</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>$x_1 \text{ xor } x_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0 □</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1 □</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1 □</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0 □</td>
</tr>
</tbody>
</table>
Which of these are linearly separable?

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_1) and (x_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_1) or (x_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_1) xor (x_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Which of these are linearly separable?

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>$x_1 \text{ and } x_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>$x_1 \text{ or } x_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>$x_1 \text{ xor } x_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Back Propagation

XOR

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>$x_1 \text{ xor } x_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Diagram:

- Input x_1 and x_2 connected to two $T = ?$ units.
- Two output units connected to the XOR output.
- Output equation: $\text{Output} = x_1 \text{ xor } x_2$.
xor

<table>
<thead>
<tr>
<th>x₁</th>
<th>x₂</th>
<th>x₁ xor x₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Diagram:

- Input x₁ 1 → T = 1
- Input x₂ 1 → T = 1
- Output = x₁ xor x₂

Nodes:

- T = 1
- T = 1
- T = 1
Learning in multilayer neural networks

- Similar idea as perceptrons.
- Examples are presented to the network.
- If the network computes an output that matches the desired, nothing is done.
- If there is an error, then the weights are adjusted to balance the error.
Challenge

- for multilayer networks, we don’t know what the expected output/error is for the internal nodes
Backpropagation

- Say we get it wrong, and we now want to update the weights

We can update this layer just as if it were a perceptron
Backpropagation

Say we get it wrong, and we now want to update the weights

“back-propagate” the error (actual – predicted):

Assume all of these nodes were responsible for some of the error

How can we figure out how much they were responsible for?
Say we get it wrong, and we now want to update the weights

error (actual – predicted)

error for node i is: $w_i \text{ error}$
Backpropagation

- Say we get it wrong, and we now want to update the weights

Update these weights and continue the process back through the network
Backpropagation

- Calculate the error at the output layer.
- Backpropagate the error up the network.
- Update the weights based on these errors.
- Can be shown that this is the appropriate thing to do based on our assumptions.
- That said, many neuroscientists don’t think the brain does backpropagation of errors
Neural network regression

- Given enough hidden nodes, you can learn any function with a neural network.

- Challenges:
 - overfitting - learning only the training data and not learning to generalize.
 - picking a network structure.
 - can require a lot of tweaking of parameters, preprocessing, etc.
Summary

- Perceptrons, one-layer networks, are insufficiently expressive
- Multi-layer networks are sufficiently expressive and can be trained by error back-propagation
- Many applications including speech, driving, hand-written character recognition, fraud detection, driving, etc.
Our Python NN module

<table>
<thead>
<tr>
<th>x₁</th>
<th>x₂</th>
<th>x₃</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

```
table = [
    ([0.0, 0.0, 0.0], [1.0]),
    ([0.0, 1.0, 0.0], [0.0]),
    ([1.0, 0.0, 0.0], [1.0]),
    ([1.0, 1.0, 0.0], [0.0]),
    ([0.0, 0.0, 1.0], [1.0]),
    ([0.0, 1.0, 1.0], [1.0]),
    ([1.0, 0.0, 1.0], [1.0]),
    ([1.0, 1.0, 1.0], [0.0])
]```
Data format

list of examples

```
[([0.0, 0.0, 0.0], [1.0]),
 ([0.0, 1.0, 0.0], [0.0]),
 ([1.0, 0.0, 0.0], [1.0]),
 ([1.0, 1.0, 0.0], [0.0]),
 ([0.0, 0.0, 1.0], [1.0]),
 ([0.0, 1.0, 1.0], [1.0]),
 ([1.0, 0.0, 1.0], [1.0]),
 ([1.0, 1.0, 1.0], [0.0])]
```

(input list, output list)

example = tuple
Training on data

Construct a new network:

```python
>>> nn = NeuralNet(3, 2, 1)
```

- **constructor**: constructs a new NN object
- **input nodes**
- **hidden nodes**
- **output nodes**
Training on data

Construct a new network:

```python
>>> nn = NeuralNet(3, 2, 1)
```
Training on data

```python
>>> nn.train(table)
error 0.195200
error 0.062292
error 0.031077
error 0.019437
error 0.013728
error 0.010437
error 0.008332
error 0.006885
error 0.005837
error 0.005047
```

by default, trains 1000 iterations and prints out error values every 100 iterations
After training, can look at weights

```python
>>> nn.train(table)
>>> nn.get_IH_weights()
[[[w1a, w1b, w1c],
 [w2a, w2b, w2c]],
[b1, b2]]
```
After training, can look at weights

```python
>>> nn.get_HO_weights()
[[[w1a, w1b]],
 [b1]]
```
Many parameters to play with

```python
def train(data,
 learning_rate=0.01,
 iterations=1000, print_interval=100)
```

`nn.train(training_data)` carries out a training cycle. As specified earlier, the training data is a list of input-output pairs. There are three optional arguments to the train function.

- `learning_rate` defaults to 0.01
- `iterations` defaults to 1000. It specifies the number of passes over the training data
- `print_interval` defaults to 100. The value of the error is displayed after `print_interval` passes over the data; we hope to see the value decreasing. Set the value to 0 if you do not want to see the error values.
Calling with optional parameters

>>> nn.train(table, iterations = 5, print_interval = 1)
error 0.005033
error 0.005026
error 0.005019
error 0.005012
error 0.005005
Optional parameters

- `optional_parameters.py`

- Check out the constructor (`__init__` function) of `NeuralNet` for another interesting optional parameter: activation function!

- It may be worth experimenting with different activation functions to see what happens to accuracy and run time...
Train vs test

TrainData

<table>
<thead>
<tr>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>0.2</td>
<td>0.04</td>
</tr>
<tr>
<td>0.4</td>
<td>0.16</td>
</tr>
<tr>
<td>0.6</td>
<td>0.36</td>
</tr>
<tr>
<td>0.8</td>
<td>0.64</td>
</tr>
<tr>
<td>1.0</td>
<td>1.00</td>
</tr>
</tbody>
</table>

TestData

<table>
<thead>
<tr>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.09</td>
</tr>
<tr>
<td>0.5</td>
<td>0.25</td>
</tr>
<tr>
<td>0.7</td>
<td>0.49</td>
</tr>
<tr>
<td>0.8</td>
<td>0.64</td>
</tr>
<tr>
<td>0.9</td>
<td>0.81</td>
</tr>
</tbody>
</table>

>>> nn.train(trainData)
>>> nn.test(testData)
Resources

- optional_parameters

Homework

- No homework for the week
- Sign up for group presentations