Welcome to lecture 11, where we will examine recursion, a new way of thinking about our code.
Before we start talking about recursion, are there any questions about the midterm? The only topic we will cover today is recursion.
The call stack

- What is displayed if we call mystery(2, 3) in call_stack.py code?
 - The mystery number is: 15
 - We can visualize each of these function calls:
 - mystery(2, 3)
 - "The mystery number is: " + str(c(2, 3))
 - b(6) - 1
 - 6 + a()
 - 10
 - 6 + 10
 - 16 - 1
 - "The mystery number is: 15"
 - The way that the computer keeps track of all of this is called the "stack"

- As functions are called, the stack grows. New function calls are added onto the stack. When functions finish, the stack shrinks and the function call is removed. The result is given to the next function on the stack (the function that called it).

We will start by looking at what happens when we call the function mystery(2,3) in call_stack. There are multiple steps that will eventually return The mystery number is: 15". A call stack is a mechanism for an interpreter to keep track of its place in a program that calls multiple functions — what function is currently being run and what functions are called from within that function, etc. When a program calls a function, the interpreter adds it to the call stack and then starts carrying out the function. Any functions that are called by that function are added to the call stack further up, and run where their calls are reached. When the current function is finished, the interpreter takes it off the stack and resumes execution where it left off in the last code listing.
We can actually see the call stack either by using the debugger or by introducing an error, such as changing the return statement in function a to return 10 + " " (we can't add ints and strs).

Traceback (most recent call last):
 File "/Users/apaa2017/workspace/cs51A/2022sp/Lecture10/call_stack.py", line 15, in <module>
 mystery(2, 3)
 File "/Users/apaa2017/workspace/cs51A/2022sp/Lecture10/call_stack.py", line 13, in mystery
 print("The mystery number is: ", str(c(num1, num2)))
 File "/Users/apaa2017/workspace/cs51A/2022sp/Lecture10/call_stack.py", line 10, in c
 return b(num1 * num2) - 1
 File "/Users/apaa2017/workspace/cs51A/2022sp/Lecture10/call_stack.py", line 7, in b
 return num + a()
 File "/Users/apaa2017/workspace/cs51A/2022sp/Lecture10/call_stack.py", line 4, in a
 return 10 + " "
 TypeError: unsupported operand type(s) for +: 'int' and 'str'

We can actually see the call stack either by using the debugger or by introducing an error, such as changing the return statement in function a to return 10 + " " (remember, we can’t add ints and strs).
Now we will practice by writing a function called \texttt{factorial} that calculates the factorial of a given number. There are two obvious ways you could go about it, both including a \texttt{for} loop. The difference is what you pass to the range function and what you pass in the intermediate product.
Recursion

- A recursive function is defined with respect to itself:
 - somewhere inside the function, the function calls itself, just like any other function call.
 - The recursive call should be on a "smaller" version of the problem.
- Can we write factorial recursively?
 - key idea: try and break down the problem into some computation, plus a smaller subproblem that looks similar.
 - $5! = 5 \times 4 \times 3 \times 2 \times 1$
 - $5! = 5 \times 4!$

There is a third way we could write this function and it is recursive. A recursive function is defined with respect to itself: somewhere inside the function, the function calls itself, just like any other function call. The recursive call should be on a "smaller" version of the problem. We can see that we could break $5!$ as $5 \times 4!$.
A first try at a recursive factorial function

```python
>>> def factorial(n):
...    return n * factorial(n-1)

What happens if we call factorial(5)?

5 * factorial(4)
   4 * factorial(3)
      3 * factorial(2)
         2 * factorial(1)
            1 * factorial(0)
               0 * factorial(-1)
               ...

at some point we need to stop. This is called the base case for recursion. When?

When n == 1.
```

A logical step would be to try writing the function factorial(n) by returning n*factorial(n-1). The problem is that our code would never terminate because we would keep calling factorial to even instances that don’t make sense (-1, -2, etc). We need to stop at what is called the base case of the recursion, in our case, when n==1.
Trying again to write a recursive factorial function

- Look at factorial function in `recursion.py` code
 - First thing, check to see if we're at the base case (`if n == 1`).
 - if so, just return 1
 - Otherwise, we fall into our recursive case:
 - `n * factorial(n-1)`

We will start exactly with this check and return 1 when we hit the base case. Otherwise, we can recursively call this function to n-1.
To write our recursive functions we will follow four basic steps. 1) we will start by defining the header of the function, that is writing its name and parameters. 2) We will proceed with defining the receive case. Most of the times, it will be enough to pretend that we have a working version of the function, but the function works only on smaller versions of our problem. (When I say smaller versions, I mean smaller numbers, shorter strings, shorter, lists, etc). You might also want to try writing things in plan English or even thinking in mathematical terms. 3) We then proceed with defining our base case which is the smallest/simplest problem. Putting it all together, we start by checking the base case where we return or do something for the recursive case. For the recursive case (that is, when the base case is not true), we calculate the problem using the recursive definition and return the answer.
Recursion is similar to induction in mathematics

- Proof by induction in mathematics:
 - 1. show something works the first time (base case).
 - 2. assume that it works for some time.
 - 3. show it will work for the next time (i.e. time after “some time”).
 - 4. therefore, it must work for all the times.

Recursion might sound familiar to induction if you have taken a proof-based course. In induction you would show something works the first time (this is your base case), you assume that it works for some time, and show that it will work for the next time (recursive case), therefore it must work for all times.
Write a recursive function called `rec_sum` that takes a positive number as a parameter and calculates the sum of the numbers from 1 up to and including that number.

1. Define what the header function is:
   ```python
def rec_sum(n)
```

2. Define the recursive case:

 $\sum_{i=1}^{n} = 1 + 2 + 3 + \ldots + (n-1) + n = ???$

 Can you rewrite this expression so that there's a sum on the right hand side (that's smaller?)

 Another way to think about it: pretend like we have a function called `rec_sum` that we can use but only on smaller numbers
   ```python
   rec_sum(n) = ????
   rec_sum(?)
   rec_sum(n) = n + rec_sum(n-1)
   i.e. the sum of the numbers 1 through n, is n plus the sum of the numbers 1 through n-1
   ```

Over the next slides, we will follow the same recipe. I will provide you with problems that you will solve writing recursive functions for, following the four steps we just saw. Our first problem asks us to write a recursive function that takes a positive number and calculates the sum of numbers from 1 up to and including that number.
Practice Time (cont’d)

- Write a recursive function called `rec_sum` that takes a positive number as a parameter and calculates the sum of the numbers from 1 up to and including that number.
- 3. Define the base case:
 - in each case, the number is getting smaller. What’s the smallest number we would ever want to have the sum of?
 - 0. What’s the answer when it’s 0? 0!
- 4. put it all together! - look at the `rec_sum` function in `recursion.py` code
 - Check the base case first:
 - `if n == 0`
 - Otherwise:
 - Do exactly our recursive relationship

Make sure you review each of the steps.
Practice Time

- Write a recursive function called `rec_sum_list` that takes a list of numbers as a parameter and calculates their sum.
 1. Define what the function header is:
     ```python
def rec_sum_list(some_list)
```
 2. Define the recursive case:
 - Pretend like we have a function called `rec_sum_list` that we can use but only on smaller lists
 - what would we get back if we called `rec_sum_list` on everything except the first element?
 - the sum of all of those elements
 - how would we get the sum to the entire list?
 - just add that element to the sum of the rest of the elements
 - The recursive relationship is:
       ```python
       rec_sum_list(some_list) = some_list[0] + rec_sum_list(some_list[1:])
       ```

Now, we will write a recursive function that given a list, it will calculate the sum of its numbers.
Practice Time (cont’d)

- Write a recursive function called `rec_sum_list` that takes a list of numbers as a parameter and calculates their sum.
 - 3. Define the base case:
 - in each case, the list is getting smaller.
 - Eventually, it will be an empty list. What is the sum of an empty list?
 - 0.
 - 4. Put it all together! - look at the `rec_sum_list` function in `recursion.py` code
 - Check the base case first:
 - if `some_list == []`
 - Could have also written `if len(some_list) == 0`
 - Otherwise:
 - Do exactly our recursive relationship
Practice Time (cont’d)

> What does this work? Let’s look at an example
> `rec_sum_list([1, 2, 3, 4])`
> 1 + `rec_sum_list([2, 3, 4])`
> 2 + `rec_sum_list([3, 4])`
> 3 + `rec_sum_list([4])`
> 4 + 0
> 3 + 4
> 2 + 7
> 1 + 9
> 10

Look at `rec_sum_list_print` in `recursion.py` to see how print statements reveal the recursion.

This is the stack of the calls that happen. You can also use print statements to see the recursion.
Practice Time

- Write a recursive function called `reverse` that takes a string as a parameter and reverses the string.
 - 1. Define what the function header is:
     ```python
def reverse(some_string)
```
 - 2. Define the recursive case:
 - Pretend like we have a function called `reverse` that we can use but only on smaller strings
 - To reverse a string:
 - remove the first character,
 - reverse the remaining characters,
 - put that first character at the end
 - The recursive relationship is:
      ```python
      reverse(some_string) = reverse(some_string[1:]) + some_string[0]
      ```

Your next practice problem is to write a function that reverses a string recursively.
Practice Time (cont’d)

- Write a recursive function called reverse that takes a string as a parameter and reverses the string

 - 3. Define the base case:
 - in each case, the string is getting shorter.
 - Eventually, it will be an empty string. What is the reverse of an empty string?
 - ""

 - 4. Put it all together! Look at the reverse function in recursion.py code
 - Check the base case first:
 - if some_string == ""
 - Could have also written if len(some_string) == 0
 - Otherwise:
 - Do exactly our recursive relationship
 - Look at reverse_print in recursion.py to see how print statements reveal the recursion.

Again, you can use print statements to check the recursion.
Practice Time

- Write a recursive function called `power` that takes a base and an exponent as parameters and returns \(base^{exponent} \).
- That is it calculates \(base^{exponent} \) without using the \(** \) operator. You can assume a positive exponent.
- 1. Define what the function header is:
  ```python
def power(base, exponent)
```
- 2. Define the recursive case:
  ```python
  base^{exponent} = base^{exponent-1} * base
  ```

Finally, we will write a simple function (there is a faster version on the linked file) that calculates the power of two numbers.
Practice Time (cont’d)

▸ Write a recursive function called power that takes a base and an exponent as parameters and returns $base^{exponent}$.

▸ 3. Define the base case:
 ▸ in each case, the exponent is getting smaller.
 ▸ Eventually, the exponent will be 0.
 ▸ $base^0 = 1$

▸ 4. put it all together! - look at the power function in recursion.py code
 ▸ Check the base case first:
 ▸ if exponent == 0
 ▸ Otherwise:
 ▸ Do exactly our recursive relationship.
Practice Time

- What does `rec_mystery` function in `mystery_recursion.py` do?
 - Recursive function.
 - Work through a small example, e.g., `rec_mystery([2, 4, 3, 1])`
 - `rec_mystery([2, 4, 3, 1])` # compares `m = 4` and `l[0] = 2` and returns 4
 - `rec_mystery([4, 3, 1])` # compares `m = 3` and `l[0] = 4` and returns 4
 - `rec_mystery([3, 1])` # compares `m = 1` and `l[0] = 3` and returns 3
 - `rec_mystery([1])` # returns 1
 - Returns the maximum element in the list!

What do you think that the `rec_mystery` function does? I have outlined above what happens at the end of each recursive call. It returns the maximum element in the list.
Practice Time (cont’d)

- Returns the maximum element in the list! How?
 1. `rec_max(l)`
 2. `rec_max(l) = ??? rec_max(l[1:])`
 - assume/trust that the recursive call works
 - if it does, then it will return the largest value in `l[1:]`
 - the largest value of the whole list is then either the first element `l[0]` or the largest value in the rest of the list (`rec_max(l[1:])`)
 3. The list will get smaller and smaller. `max([])` doesn’t really make sense, so our base case will be when there’s a single element.

Recursive case:
- make a recursive call on the rest of the list
- store that value in `m`
- compare `m` to the first element and return whichever is larger

Let’s work on why that’s the case.
Practice Time

- Look at the spiral function in `turtle_recursion.py` do?
 - what would the picture look like if I called `spiral(80, 50)`
 - What does this function do?
 - Draws a spiral on the screen recursively.
 - `forward 80`
 - `left 30`
 - `spiral(76, 49)`
 - `forward 76`
 - `left 30`
 - `spiral(72.2, 48)`
 - `forward 72.2`
 - `left 30`

What about the spiral function? (It has a good name, so it's not hard to imagine that it draws a spiral on the screen, recursively)
Practice Time (cont’d)

- When does it stop?
 - When levels = 0.
 - We put a dot there to make it explicit.
- Repeat 50 times:
 - forward length
 - left 30
 - reduce length by 5%
Practice Time (cont’d)

- What if we wanted to end up back at the starting point, but we couldn’t pick the pen up? We could trace our steps backwards.

- Assume that the recursive call returns back to its starting point. What would we need to do to make sure that our call returned back to the starting point?

- Add the following after the recursive call:
 - `right(30)`
 - `backward(length)`

- If we run it now, we draw the spiral all the way down, and then we retrace backwards:
 - Each call to `spiral` retraces its own part after the recursive call.
 - The stack keeps track of each of the recursive calls.

We could also back trace our steps right after the recursive call.
Practice Time

- Run the broccoli_demo function in turtle_recursion.py
 - 1. Define what the header function is:
 - broccoli(x, y, length, angle)
 - 2. Define the recursive case:
 - broccoli is a line with three other broccolis at the end:
 - one directly straight out
 - one 20 degrees to the left
 - one 20 degrees to the right
 - the three other broccolis should be smaller/shorter than the current

Finally, let's see the broccoli function that draws a beautiful fractal broccoli.
Practice Time (cont’d)

- Run the broccoli_demo function in turtle_recursion.py
- 3. Define the base case:
 - in each case, the length of the broccoli to be drawn gets shorter.
 - We stop at length < 10 and place a yellow dot
- 4. put it all together! - look at the power function in recursion.py code
 - Check the base case first:
 - if length < 10
 - Draw a yellow dot.
 - Otherwise:
 - draw three smaller broccolis at different angles.
- new_x and new_y are the ending coordinates of the line being drawn. We save them because after the first recursive call to broccoli the turtle won’t be in the same place.
Resources

- Textbook: Chapter 16
- recursion.py
- call_stack.py
- mystery_recursion.py
- turtle_recursion.py

Practice Problems

- Practice 7 (solutions), Practice 8 (solutions)

Homework

- Assignment 5 (ongoing)