
Perceptron Learning

Dave Kauchak
Alexandra Papoutsaki
Zilong Ye
CSCI 051A
Spring 2022



Artificial Neural Networks
Node (Neuron)

Edge (synapses)



W is the strength of signal sent between A and B.

If A fires and w is positive, then A stimulates B.

If A fires and w is negative, then A inhibits B.

Weight wNode A Node B

(neuron) (neuron)



Output y

Input x1

Input x2

Input x3

Input x4

Weight w1

Weight w2

Weight w3

Weight w4

A Single Neuron/Perceptron

threshold function

Each input contributes:
xi * wi

€ 

∑

€ 

g(in)

€ 

in = wi
i
∑ xi



Training neural networks

T = ? Output y

Input x1

Input x3

w1 = ?

w3 = ?

Input x2
w2 = ?

x1 x2 x3 y

0 0 0 1
0 1 0 0
1 0 0 1
1 1 0 0

0 0 1 1
0 1 1 1
1 0 1 1

1 1 1 0

1. start with some initial weights and 
thresholds

2. show examples repeatedly to NN
3. update weights/thresholds by 

comparing NN output to actual 
output



Perceptron learning algorithm

repeat until you get all examples right:

-for each “training” example:
-calculate current prediction on example
-if wrong:

-update weights and threshold towards getting this 
example correct



1

-1

1

0.5

Perceptron learning

Threshold of 1

1

1

0

1

predicted

actual

1

?



1

-1

1

0.5

Perceptron learning

0
Threshold of 1

1

1

0

1

predicted

actual

1
What could we adjust to make it right?

Weighted sum is 
0.5, which is not 
equal or larger than 
the threshold



1

-1

1

0.5

Perceptron learning

0
Threshold of 1

1

1

0

1

predicted

actual

1
This weight doesn’t matter, so don’t change



1

-1

1

0.5

Perceptron learning

0
Threshold of 1

1

1

0

1

predicted

actual

1
Could increase any of these weights



1

-1

1

0.5

Perceptron learning

0
Threshold of 1

1

1

0

1

predicted

actual

1
Could decrease the threshold



Perceptron update rule
-if wrong:

-update weights and threshold towards getting this 
example correct

-if wrong:

Δwi = λ * (actual - predicted) * xi

wi = wi + Δwi



1

-1

1

0.5

Perceptron learning

0
Threshold of 1

1

1

0

1

predicted

actual

1

Δwi = λ * (actual - predicted) * xi

What does this do in this case?

wi = wi + Δwi



1

-1

1

0.5

Perceptron learning

0
Threshold of 1

1

1

0

1

predicted

actual

1

Δwi = λ * (actual - predicted) * xi

causes us to increase the weights!

wi = wi + Δwi



Perceptron learning

1
Threshold of 1

predicted

actual

0

Δwi = λ * (actual - predicted) * xi

What if predicted = 1 and actual = 0?

wi = wi + Δwi



Perceptron learning

1
Threshold of 1

predicted

actual

0

Δwi = λ * (actual - predicted) * xi

We’re over the threshold, so want to decrease weights:
actual - predicted = -1

wi = wi + Δwi



1

-1

1

0.5

Perceptron learning

0
Threshold of 1

1

1

0

1

predicted

actual

1

Δwi = λ * (actual - predicted) * xi

What does this do?

wi = wi + Δwi



1

-1

1

0.5

Perceptron learning

0
Threshold of 1

1

1

0

1

predicted

actual

1

Δwi = λ * (actual - predicted) * xi

Only adjust those weights that 
actually contributed!

wi = wi + Δwi



1

-1

1

0.5

Perceptron learning

0
Threshold of 1

1

1

0

1

predicted

actual

1

Δwi = λ * (actual - predicted) * xi

What does this do?

wi = wi + Δwi



1

-1

1

0.5

Perceptron learning

0
Threshold of 1

1

1

0

1

predicted

actual

1

Δwi = λ * (actual - predicted) * xi

“learning rate”: value between 0 and 1 (e.g., 0.1)
adjusts how abrupt the changes are to the model

wi = wi + Δwi



1

-1

1

0.5

Perceptron learning

0
Threshold of 1

1

1

0

1

predicted

actual

1

Δwi = λ * (actual - predicted) * xi

What about the threshold?

wi = wi + Δwi



Output y

Input x1

Input x2

Input x3

Weight w1

Weight w2

Weight w3 Threshold of t

Output y

Input x1

Input x2

Input x3

Weight w1

Weight w2

Weight w3 Threshold of 0

1 Weight w4

1 if wixi
i=1

3

∑ ≥ t

1 if w4 + wixi
i=1

3

∑ ≥ 0



Output y

Input x1

Input x2

Input x3

Weight w1

Weight w2

Weight w3 Threshold of t

Output y

Input x1

Input x2

Input x3

Weight w1

Weight w2

Weight w3 Threshold of 0

1 Weight w4

equivalent when w4 = -t

1 if wixi
i=1

3

∑ ≥ t

1 if w4 + wixi
i=1

3

∑ ≥ 0



Perceptron learning algorithm

initialize weights of the model randomly

repeat until you get all examples right:

- for each “training” example (in a random order):
-calculate current prediction on the example
-if wrong:

wi = wi + λ * (actual - predicted) * xi



x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

Output y

Input x1

Input x2

W1

1

W2

W3

initialize with random weights

λ = 0.1



x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

Output y

Input x1

Input x2

W1 = 0.2 

1

W2 = 0.5 

W3 = 0.1

λ = 0.1



x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

Output y

1

0

W1 = 0.2 

1

W2 = 0.5 

W3 = 0.1

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

Right or wrong?



x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

Output y

1

0

W1 = 0.2 

1

W2 = 0.5 

W3 = 0.1

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

Wrong

sum =  0.3: output 1



x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

Output y

1

0

W1 = 0.2 

1

W2 = 0.5 

W3 = 0.1

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

new weights?

sum =  0.3: output 1



x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

Output y

1

0

W1 = 0.2

1

W2 = 0.5 

W3 = 0.1

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

decrease (0-1=-1) all non-zero xi by 0.1



x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

Output y

1

0

W1 = 0.1 

1

W2 = 0.5 

W3 = 0.0

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

decrease (0-1=-1) all non-zero xi by 0.1



x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

Output y

1

1

W1 = 0.1 

1

W2 = 0.5 

W3 = 0.0

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

Right or wrong?



x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

Output y

1

0

W1 = 0.1 

1

W2 = 0.5 

W3 = 0.0

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

Right.  No update!

sum =  0.6: output 1



x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

Output y

0

1

W1 = 0.1 

1

W2 = 0.5 

W3 = 0.0

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

Right or wrong?



x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

Output y

0

1

W1 = 0.1 

1

W2 = 0.5 

W3 = 0.0

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

Wrong

sum =  0.5: output 1



x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

Output y

0

1

W1 = 0.1 

1

W2 = 0.5 

W3 = 0.0

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

sum =  0.5: output 1

new weights?



x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

Output y

0

1

W1 = 0.1 

1

W2 = 0.4 

W3 = -0.1

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

sum =  0.5: output 1

decrease (0-1=-1) all non-zero xi by 0.1



x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

Output y

0

0

W1 = 0.1 

1

W2 = 0.4 

W3 = -0.1

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

Right or wrong?



x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

Output y

0

0

W1 = 0.1 

1

W2 = 0.4 

W3 = -0.1

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

Right. No update! 

sum =  -0.1: output 0



x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

Output y

0

1

W1 = 0.1 

1

W2 = 0.4 

W3 = -0.1

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

Right or wrong?



x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

Output y

0

1

W1 = 0.1 

1

W2 = 0.4 

W3 = -0.1

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

Wrong

sum =  0.3: output 1



x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

Output y

0

1

W1 = 0.1 

1

W2 = 0.3 

W3 = -0.2

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

sum =  0.3: output 1

decrease (0-1=-1) all non-zero xi by 0.1



x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

Output y

1

1

W1 = 0.1 

1

W2 = 0.3 

W3 = -0.2

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

sum =  0.2: output 1

Right.  No update!



x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

Output y

0

0

W1 = 0.1 

1

W2 = 0.3 

W3 = -0.2

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

sum =  -0.2: output 0

Right.  No update!



x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

Output y

1

0

W1 = 0.1 

1

W2 = 0.3 

W3 = -0.2

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

sum =  -0.1: output 0

Right.  No update!



x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

Output y

1

0

W1 = 0.1 

1

W2 = 0.3 

W3 = -0.2

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

Are they all right?



x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

Output y

0

1

W1 = 0.1 

1

W2 = 0.3 

W3 = -0.2

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

sum =  0.1: output 1

Wrong



x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

Output y

0

1

W1 = 0.1 

1

W2 = 0.2 

W3 = -0.3

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

sum =  0.1: output 1

decrease (0-1=-1) all non-zero xi by 0.1



x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

Output y

0

1

W1 = 0.1 

1

W2 = 0.2 

W3 = -0.3

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

sum =  0.1: output 1

Are they all right?



x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

Output y

1

1

W1 = 0.1 

1

W2 = 0.2 

W3 = -0.3

λ = 0.1

wi = wi + λ * (actual - predicted) * xi

if wrong:

We’ve learned AND!



Perceptron learning

A few missing details, but not much more than this

Keeps adjusting weights as long as it makes mistakes

If the training data is linearly separable, the perceptron 
learning algorithm is guaranteed to converge to the 
“correct” solution (where it gets all examples right)


