Perceptron Learning

Dave Kauchak

Alexandra Papoutsaki
Zilong Ye
CSCI 051A
Spring 2022

Artificial Neural Networks

W is the strength of signal sent between A and B.

If A fires and w is positive, then A stimulates B.

If A fires and w is negative, then A inhibits B.

A Single Neuron/Perceptron

Training neural networks

x_{1}	x_{2}	x_{3}	y
0	0	0	1
0	1	0	0
1	0	0	1
1	1	0	0
0	0	1	1
0	1	1	1
1	0	1	1
1	1	1	0

1. start with some initial weights and thresholds
2. show examples repeatedly to NN
3. update weights/thresholds by comparing NN output to actual output

Perceptron learning algorithm

 repeat until you get all examples right:for each "training" example:
del calculate current prediction on example
dif wrong:
update weights and threshold towards getting this example correct

Perceptron learning

Perceptron learning

Perceptron learning

This weight doesn't matter, so don't change

Perceptron learning

Could decrease the threshold

Perceptron update rule

(1) if wrong:
*update weights and threshold towards getting this example correct
if wrong:

$$
\begin{aligned}
& \mathrm{w}_{\mathrm{i}}=\mathrm{w}_{\mathrm{i}}+\Delta \mathrm{w}_{\mathrm{i}} \\
& \Delta \mathrm{w}_{\mathrm{i}}=\lambda^{*}(\text { actual }- \text { predicted })^{*} \mathrm{x}_{\mathrm{i}}
\end{aligned}
$$

Perceptron learning

What does this do in this case?

Perceptron learning

causes us to increase the weights!

Perceptron learning

What if predicted $=1$ and actual $=0$?

Perceptron learning

We're over the threshold, so want to decrease weights: actual - predicted $=-1$

Perceptron learning

What does this do?

Perceptron learning

Only adjust those weights that actually contributed!

Perceptron learning

Perceptron learning

"learning rate": value between 0 and 1 (e.g., 0.1) adjusts how abrupt the changes are to the model

Perceptron learning

What about the threshold?

Perceptron learning algorithm

initialize weights of the model randomly

repeat until you get all examples right:
for each "training" example (in a random order):
-1 calculate current prediction on the example
if wrong:

$$
\mathrm{w}_{\mathrm{i}}=\mathrm{w}_{\mathrm{i}}+\lambda^{*}(\text { actual }- \text { predicted }){ }^{*} \mathrm{x}_{\mathrm{i}}
$$

x_{1}	x_{2}	x_{1} and x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

$$
\lambda=0.1
$$

initialize with random weights

x_{1}	x_{2}	x_{1} and x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

$$
\lambda=0.1
$$

x_{1}	x_{2}	x_{1} and x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

$$
\lambda=0.1
$$

if wrong:

$$
w_{i}=w_{i}+\lambda^{*}(\text { actual }- \text { predicted }){ }^{*} x_{i}
$$

Right or wrong?

x_{1}	x_{2}	x_{1} and x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

$$
\lambda=0.1
$$

if wrong:

$$
w_{i}=w_{i}+\lambda^{*}(\text { actual }- \text { predicted }){ }^{*} x_{i}
$$

Wrong

x_{1}	x_{2}	x_{1} and x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

$$
\lambda=0.1
$$

if wrong:

$$
w_{i}=w_{i}+\lambda^{*}(\text { actual }- \text { predicted }){ }^{*} x_{i}
$$

new weights?

x_{1}	x_{2}	x_{1} and x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

$$
\lambda=0.1
$$

if wrong:

$$
w_{i}=w_{i}+\lambda^{*}(\text { actual }- \text { predicted }){ }^{*} x_{i}
$$

decrease (0-1=-1) all non-zero x_{i} by 0.1

x_{1}	x_{2}	x_{1} and x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

$$
\lambda=0.1
$$

if wrong:

$$
w_{i}=w_{i}+\lambda^{*}(\text { actual }- \text { predicted }){ }^{*} x_{i}
$$

decrease (0-1=-1) all non-zero x_{i} by 0.1

x_{1}	x_{2}	x_{1} and x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

$$
\lambda=0.1
$$

if wrong:

$$
w_{i}=w_{i}+\lambda^{*}(\text { actual }- \text { predicted }){ }^{*} x_{i}
$$

Right or wrong?

x_{1}	x_{2}	x_{1} and x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

$$
\lambda=0.1
$$

if wrong:

$$
w_{i}=w_{i}+\lambda^{*}(\text { actual }- \text { predicted }){ }^{*} x_{i}
$$

Right. No update!

x_{1}	x_{2}	x_{1} and x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

$$
\lambda=0.1
$$

if wrong:

$$
w_{i}=w_{i}+\lambda^{*}(\text { actual }- \text { predicted }){ }^{*} x_{i}
$$

Right or wrong?

x_{1}	x_{2}	x_{1} and x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

$$
\lambda=0.1
$$

if wrong:

$$
w_{i}=w_{i}+\lambda^{*}(\text { actual }- \text { predicted })^{*} x_{i}
$$

Wrong

x_{1}	x_{2}	x_{1} and x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

$$
\lambda=0.1
$$

if wrong:

$$
w_{i}=w_{i}+\lambda^{*}(\text { actual }- \text { predicted })^{*} x_{i}
$$

new weights?

x_{1}	x_{2}	x_{1} and x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

$$
\lambda=0.1
$$

if wrong:

$$
w_{i}=w_{i}+\lambda^{*}(\text { actual }- \text { predicted })^{*} x_{i}
$$

x_{1}	x_{2}	x_{1} and x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

$$
\lambda=0.1
$$

if wrong:

$$
w_{i}=w_{i}+\lambda^{*}(\text { actual }- \text { predicted }) * x_{i}
$$

Right or wrong?

x_{1}	x_{2}	x_{1} and x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

$$
\lambda=0.1
$$

if wrong:

$$
w_{i}=w_{i}+\lambda^{*}(\text { actual }- \text { predicted })^{*} x_{i}
$$

Right. No update!

x_{1}	x_{2}	x_{1} and x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

$$
\lambda=0.1
$$

if wrong:

$$
w_{i}=w_{i}+\lambda^{*}(\text { actual }- \text { predicted }){ }^{*} x_{i}
$$

Right or wrong?

x_{1}	x_{2}	x_{1} and x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

$$
\lambda=0.1
$$

if wrong:

$$
w_{i}=w_{i}+\lambda^{*}(\text { actual }- \text { predicted })^{*} x_{i}
$$

Wrong

x_{1}	x_{2}	x_{1} and x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

$$
\lambda=0.1
$$

if wrong:

$$
w_{i}=w_{i}+\lambda^{*}(\text { actual }- \text { predicted })^{*} x_{i}
$$

x_{1}	x_{2}	x_{1} and x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

$$
\lambda=0.1
$$

if wrong:

$$
w_{i}=w_{i}+\lambda^{*}(\text { actual }- \text { predicted })^{*} x_{i}
$$

Right. No update!

x_{1}	x_{2}	x_{1} and x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

$$
\lambda=0.1
$$

if wrong:

$$
w_{i}=w_{i}+\lambda^{*}(\text { actual }- \text { predicted })^{*} x_{i}
$$

Right. No update!

x_{1}	x_{2}	x_{1} and x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

$$
\lambda=0.1
$$

if wrong:

$$
w_{i}=w_{i}+\lambda^{*}(\text { actual }- \text { predicted })^{*} x_{i}
$$

Right. No update!

x_{1}	x_{2}	x_{1} and x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

$$
\lambda=0.1
$$

if wrong:

$$
w_{i}=w_{i}+\lambda^{*}(\text { actual }- \text { predicted }){ }^{*} x_{i}
$$

Are they all right?

x_{1}	x_{2}	x_{1} and x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

$$
\lambda=0.1
$$

if wrong:

$$
w_{i}=w_{i}+\lambda^{*}(\text { actual }- \text { predicted })^{*} x_{i}
$$

Wrong

x_{1}	x_{2}	x_{1} and x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

$$
\lambda=0.1
$$

if wrong:

$$
w_{i}=w_{i}+\lambda^{*}(\text { actual }- \text { predicted })^{*} x_{i}
$$

x_{1}	x_{2}	x_{1} and x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

$$
\lambda=0.1
$$

if wrong:

$$
w_{i}=w_{i}+\lambda^{*}(\text { actual }- \text { predicted })^{*} x_{i}
$$

Are they all right?

x_{1}	x_{2}	x_{1} and x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

$$
\lambda=0.1
$$

if wrong:

$$
w_{i}=w_{i}+\lambda^{*}(\text { actual }- \text { predicted }){ }^{*} x_{i}
$$

We've learned AND!

Perceptron learning

A few missing details, but not much more than this

Keeps adjusting weights as long as it makes mistakes

If the training data is linearly separable, the perceptron learning algorithm is guaranteed to converge to the "correct" solution (where it gets all examples right)

