NAÏVE BAYES

Dave Kauchak, Alexandra Papoutsaki, Zilong Ye CS 51A – Spring 2022

Relationship between distributions

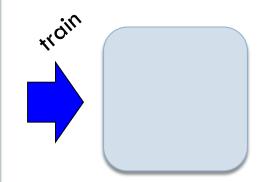
$$P(X,Y) = P(Y) * P(X|Y)$$
joint distribution
unconditional distribution

Can think of it as describing the two events happening in two steps:

The likelihood of X and Y happening:

- 1. How likely it is that Y happened?
- 2. Given that Y happened, how likely is it that X happened?

Back to probabilistic modeling



training data

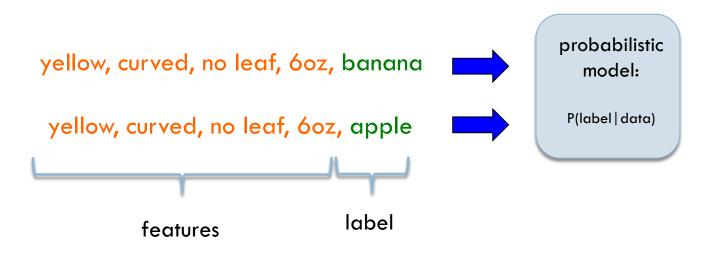
Build a model of the conditional distribution:

P(label | data)

How likely is a label given the data

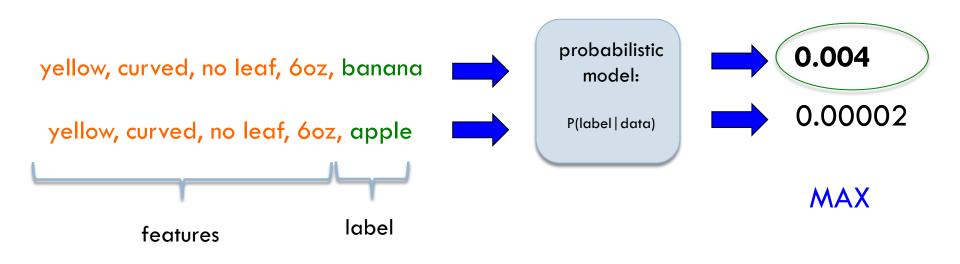
Back to probabilistic models

For each label, calculate the probability of the label given the data



Back to probabilistic models

Pick the label with the highest probability



Naïve Bayes model

Two parallel ways of breaking down the joint distribution

 $\frac{P(data, label)}{P(data, label)} = P(label) * P(data|label)$ = P(data) * P(label|data)

P(label) * P(data|label) = P(data) * P(label|data)

What is P(label | data)?

Naïve Bayes

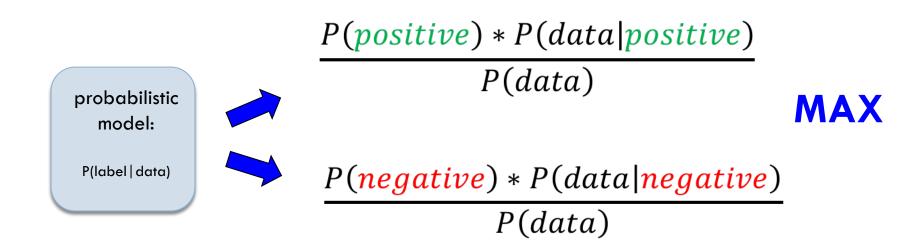
 $P(label) * P(data|label) = P(data) * \frac{P(label|data)}{P(label|data)}$

 $P(label|data) = \frac{P(label) * P(data|label)}{P(data)}$

(This is called Bayes' rule!)

Naïve Bayes

$$P(label|data) = \frac{P(label) * P(data|label)}{P(data)}$$



One observation

$\frac{P(positive) * P(data|positive)}{P(data)}$

MAX

$\frac{P(negative) * P(data | negative)}{P(data)}$

For picking the largest, P(data) doesn't matter!

One observation

P(positive) * P(data|positive) MAX P(negative) * P(data|negative)

For picking the largest, P(data) doesn't matter!

A simplifying assumption (for this class)

P(*positive*) * *P*(*data*|*positive*)

P(*negative*) * *P*(*data*|*negative*)

If we assume P(positive) = P(negative) then:

P(data|positive) MAX P(data|negative)

P(data | label)

$$\begin{split} P(data|label) &= P(f_1, f_2, \dots, f_n|label) \\ &\approx P(f_1 |label) * \\ P(f_2 |label) * \\ & \dots & * \\ P(f_n |label) \end{split}$$

This is generally not true!

However..., it makes our life easier.

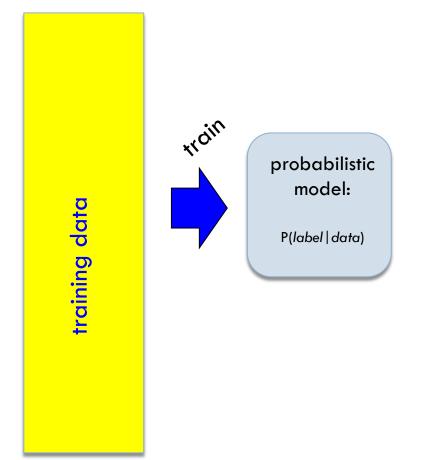
This is why the model is called **Naïve** Bayes

Naïve Bayes

 $P(f_{1}|positive) * P(f_{2}|positive) *...* P(f_{n}|positive)$ MAX $P(f_{1}|negative) * P(f_{2}|negative) *...* P(f_{n}|negative)$

Where do these come from?

Training Naïve Bayes



An aside: P(heads)

What is the P(heads) on a fair coin? 0.5

What if you didn't know that, but had a coin to experiment with?

 $P(heads) = \frac{number \ of \ times \ heads \ came \ up}{total \ number \ of \ coin \ tosses}$

P(feature | label)

 $P(heads) = \frac{number \ of \ times \ heads \ came \ up}{total \ number \ of \ coin \ tosses}$

Can we do the same thing here? What is the probability of a feature given positive, i.e. the probability of a feature occurring in in the positive label?

P(feature | positive) = ?

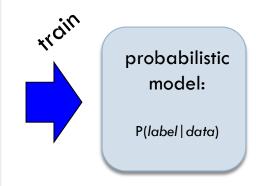
P(feature | label)

 $P(heads) = \frac{number \ of \ times \ heads \ came \ up}{total \ number \ of \ coin \ tosses}$

Can we do the same thing here? What is the probability of a feature given positive, i.e. the probability of a feature occurring in in the positive label?

 $P(feature|positive) = \frac{number \ of \ positive \ examples \ with \ that \ feature}{total \ number \ of \ positive \ examples}$

Training Naïve Bayes



- 1. Count how many examples have each label
- 2. For all examples with a particular label, count how many times each feature occurs
- 3. Calculate the conditional probabilities of each feature for all labels:

 $P(feature|label) = \frac{number \ of \ ``label'' examples \ with \ that \ feature}{total \ number \ of \ examples \ with \ that \ label}$

training data

Classifying with Naïve Bayes

For each label, calculate the product of P(feature | label) for each label

Naïve Bayes Text Classification

Positive

I loved it

I loved that movie

I hated that I loved it

Negative

I hated it I hated that movie I loved that I hated it

Given examples of text in different categories, learn to predict the category of new examples

Sentiment classification: given positive/negative examples of text (sentences), learn to predict whether new text is positive/negative

Text classification training

Positive

I loved it

I loved that movie

I hated that I loved it

Negative

I hated it I hated that movie I loved that I hated it

We'll assume words just occur once in any given sentence

Text classification training

Positive

I loved it

I loved that movie

I hated that loved it

Negative

I hated it I hated that movie I loved that hated it

We'll assume words just occur once in any given sentence

Positive

I loved it

I loved that movie

I hated that loved it

Negative

I hated it I hated that movie I loved that hated it

For each word and each label, learn:

P(word | label)

Positive

I loved it

I loved that movie

I hated that loved it

Negative

I hated it I hated that movie I loved that hated it

 $P(I \mid positive) = ?$

Positive

I loved it

I loved that movie

I hated that loved it

Negative

l hated it l hated that movie l loved that hated it

P(I | positive) = 3/3 = 1.0

Positive

I loved it

I loved that movie

I hated that loved it

Negative

I hated it I hated that movie I loved that hated it

 $P(I \mid positive)$ = 1.0 $P(loved \mid positive)$ = ?

Positive

I loved it

I loved that movie

I hated that loved it

Negative

I hated it I hated that movie I loved that hated it

P(I | positive)= 1.0P(loved | positive)= 3/3

Positive

I loved it

I loved that movie

I hated that loved it

Negative

l hated it l hated that movie l loved that hated it

 $P(I \mid positive)$ = 1.0 $P(loved \mid positive)$ = 1.0 $P(hated \mid positive)$ = ?

Positive	Negative
l loved it	l hated it
I loved that movie	I hated that movie
I hated that loved it	I loved that hated i

 $P(I \mid positive)$ = 1.0 $P(loved \mid positive)$ = 1.0 $P(hated \mid positive)$ = 1/3

P(I | negative) = ?

it

. . .

Positive		Negative	
I loved it		l hated it	
I loved that movie		I hated that movie	
I hated that loved it		I loved that hated it	
P(I positive) P(loved positive) P(hated positive)	= 1.0 = 1.0 = 1/3	P(I negative)	= 1.0

PositiveNegativeI loved itI hated itI loved that movieI hated that movieI hated that loved itI loved that hated it

P(I | positive)= 1.0P(loved | positive)= 1.0P(hated | positive)= 1/3

. . .

 $P(I \mid negative)$ = 1.0 $P(movie \mid negative)$ = ?

P(hated | positive)

Positive Negative I loved it I hated it I loved that movie I hated that movie I loved that hated it I hated that loved it P(I | positive) P(I | negative) = 1.0= 1.0= 1/3 $P(\text{loved} \mid \text{positive}) = 1.0$ P(movie | negative)

 $P(word|label) = \frac{number \ of \ times \ word \ occured \ in \ "label" \ examples}{total \ number \ of \ examples \ with \ that \ label}$

= 1/3

Classifying

 $P(I \mid positive)$ = 1.0 $P(loved \mid positive)$ = 1.0 $P(it \mid positive)$ = 2/3 $P(that \mid positive)$ = 2/3 $P(movie \mid positive)$ = 1/3 $P(hated \mid positive)$ = 1/3

P(I negative)	= 1.0
P(hated negative)	= 1.0
P(that negative)	= 2/3
P(movie negative)	= 1/3
P(it negative)	= 2/3
P(loved negative)	= 1/3

Notice that each of these is its own probability distribution

P(it positive)	
$P(it \mid positive) = 2/3$	
P(no it positive) = 1/3	

P(I positive)	= 1.0
P(loved positive)	= 1.0
P(it positive)	= 2/3
P(that positive)	= 2/3
P(movie positive)	= 1/3
P(hated positive)	= 1/3

 $P(I \mid negative)$ = 1.0 $P(hated \mid negative)$ = 1.0 $P(that \mid negative)$ = 2/3 $P(movie \mid negative)$ = 1/3 $P(it \mid negative)$ = 2/3 $P(loved \mid negative)$ = 1/3

How would we classify: "I hated movie"?

P(I positive)	= 1.0	P(I negative)	= 1.0
P(loved positive)	= 1.0	P(hated negative)	= 1.0
P(it positive)	= 2/3	P(that negative)	= 2/3
P(that positive)	= 2/3	P(movie negative)	= 1/3
P(movie positive)	= 1/3	P(it negative)	= 2/3
P(hated positive)	= 1/3	P(loved negative)	= 1/3

P(I | positive) * P(hated | positive) * P(movie | positive) = 1.0 * 1/3 * 1/3 = 1/9

P(I | negative) * P(hated | negative) * P(movie | negative) = 1.0 * 1.0 * 1/3 = 1/3

= 1.0	P(I negative)	= 1.0
= 1.0	P(hated negative)	= 1.0
= 2/3	P(that negative)	= 2/3
= 2/3	P(movie negative)	= 1/3
= 1/3	P(it negative)	= 2/3
= 1/3	P(loved negative)	= 1/3
	= 1.0 = 2/3 = 2/3 = 1/3	= 1.0P(hated negative)= 2/3P(that negative)= 2/3P(movie negative)= 1/3P(it negative)

How would we classify: "I hated the movie"?

P(I positive)	= 1.0	P(I negative)	= 1.0
P(loved positive)	= 1.0	P(hated negative)	= 1.0
P(it positive)	= 2/3	P(that negative)	= 2/3
P(that positive)	= 2/3	P(movie negative)	= 1/3
P(movie positive)	= 1/3	P(it negative)	= 2/3
P(hated positive)	= 1/3	P(loved negative)	= 1/3

P(I | positive) * P(hated | positive) * P(the | positive) * P(movie | positive) =

P(I | negative) * P(hated | negative) * P(the | negative) * P(movie | negative) =

P(I positive)	= 1.0	P(I negative)	= 1.0
P(loved positive)	= 1.0	P(hated negative)	= 1.0
P(it positive)	= 2/3	P(that negative)	= 2/3
P(that positive)	= 2/3	P(movie negative)	= 1/3
P(movie positive)	= 1/3	P(it negative)	= 2/3
P(hated positive)	= 1/3	P(loved negative)	= 1/3

P(I | positive) * P(hated | positive) * P(the | positive) * P(movie | positive) =

P(I | negative) * P(hated | negative) * P(the | negative) * P(movie | negative) =

What are these?

P(I positive)	= 1.0	P(I negative)	= 1.0
P(loved positive)	= 1.0	P(hated negative)	= 1.0
P(it positive)	= 2/3	P(that negative)	= 2/3
P(that positive)	= 2/3	P(movie negative)	= 1/3
P(movie positive)	= 1/3	P(it negative)	= 2/3
P(hated positive)	= 1/3	P(loved negative)	= 1/3

P(I | positive) * P(hated | positive) * P(the | positive) * P(movie | positive) =

P(I | negative) * P(hated | negative) * P(the | negative) * P(movie | negative) =

O! Is this a problem?

P(I positive)	= 1.0	P(I negative)	= 1.0
P(loved positive)	= 1.0	P(hated negative)	= 1.0
P(it positive)	= 2/3	P(that negative)	= 2/3
P(that positive)	= 2/3	P(movie negative)	= 1/3
P(movie positive)	= 1/3	P(it negative)	= 2/3
P(hated positive)	= 1/3	P(loved negative)	= 1/3

P(I | positive) * P(hated | positive) * P(the | positive) * P(movie | positive) =

P(I | negative) * P(hated | negative) * P(the | negative) * P(movie | negative) =

Yes. They make the entire product go to 0!

P(I positive)	= 1.0	P(I negative)	= 1.0
P(loved positive)	= 1.0	P(hated negative)	= 1.0
P(it positive)	= 2/3	P(that negative)	= 2/3
P(that positive)	= 2/3	P(movie negative)	= 1/3
P(movie positive)	= 1/3	P(it negative)	= 2/3
P(hated positive)	= 1/3	P(loved negative)	= 1/3

P(I | positive) * P(hated | positive) * P(the | positive) * P(movie | positive) =

P(I | negative) * P(hated | negative) * P(the | negative) * P(movie | negative) =

Our solution: assume any unseen word has a small, fixed probability, e.g., in this example 1/10

P(I positive)	= 1.0	P(I negative)	= 1.0
P(loved positive)	= 1.0	P(hated negative)	= 1.0
P(it positive)	= 2/3	P(that negative)	= 2/3
P(that positive)	= 2/3	P(movie negative)	= 1/3
P(movie positive)	= 1/3	P(it negative)	= 2/3
P(hated positive)	= 1/3	P(loved negative)	= 1/3

 $P(I \mid positive) * P(hated \mid positive) * P(the \mid positive) * P(movie \mid positive) = 1/90$

 $P(I \mid negative) * P(hated \mid negative) * P(the \mid negative) * P(movie \mid negative) = 1/30$

Our solution: assume any unseen word has a small, fixed probability, e.g., in this example 1/10

Full disclaimer

I've fudged a few things on the Naïve Bayes model for simplicity

Our approach is very close, but it takes a few liberties that aren't technically correct, but it will work just fine