

1

3

Admin

Assignment 10

Midterm 2 on Monday

- From dictionaries (2/21) through informed search (4/11)
- Practice problems available
- 2 page "cheat" sheet
- Will try and have an additional mentor session for midterm questions over the weekend

2

Tic Tac Toe as search

4

5

7

Tic Tac Toe as search

How can we pose this as a search problem?

6

Tic Tac Toe as search

Now what?

8

9

11

Tic Tac Toe as search

Eventually, we'll get to a state without any options

Try and make moves that move us towards a win, i.e. where there are leaves with a WIN.

10

12

13

Idea:

- define a function that gives us a "score" for how good each state is
- higher scores mean better

Optimal Strategy

An Optimal Strategy is one that is at least as good as any other, no matter what the opponent does

- If there's a way to force the win, it will
- Will only lose if there's no other option

Defining a scoring function

Our (X) turn

What should be the score of this state?
+1: we can get to a win

16

17

19

18

20

21

23

Defining a scoring function

Our (X) turn

What should be the score of this state?

0 : If we play perfectly and so does O, the best we can do is a tie (could do better if O makes a mistake)

22

24

25

27

Minimax Algorithm: An Optimal Strategy
$\operatorname{minimax}($ state $)=$
if state is a terminal state score(state)
else if MY turn
over all next states, s: return the maximum of minimax(s) else if OPPONENTS turn
over all next states, s: return the minimum of minimax(s)

Uses recursion to compute the "value" of each state

Searches down to the leaves, then the values are "backed up" through the tree as the recursion finishes

What type of search is this?

What does this assume about how MIN will play? What if this isn't true?
26

28

29

31

30

32

33

35

34

36

37

39

38

40

41

43

42

45

47

49

51

50

Games State Space Sizes

Pruning helps get a bit deeper
For many games, still can't search the entire tree

Go as deep as you can:

- estimate the score/quality of the state (called an evaluation function)
- use that instead of the real score

52

Chess evaluation functions

Ideas?

55

Example Tic Tac Toe EVAL

Tic Tac Toe

Assume MAX is using " X "
$\operatorname{EVAL}($ state $)=$
if state is win for MAX:

$+\infty$
if state is win for MIN:
$=6-4=2$
else:
(number of rows, columns and diagonals available to MAX) (number of rows, columns and diagonals available to MIN)

$$
=4-3=1
$$

54

Chess EVAL

57

Chess EVAL

A feature can be any numerical information about the board

- as general as the number of pawns
- to specific board configurations

Deep Blue: 8000 features!

Chess EVAL

Ignores actual positions!

Actual heuristic functions are often a weighted combination of features
$E V A L(s)=w_{1} f_{1}(s)+w_{2} f_{2}(s)+w_{3} f_{3}(s)+\ldots$

58

history/end-game tables

History

- keep track of the quality of moves from previous games
- use these instead of search
end-game tables
- do a reverse search of certain game configurations, for example all board configurations with king, rook and king
- tells you what to do in any configuration meeting this criterion
- if you ever see one of these during search, you lookup exactly what to do

end-game tables

Devastatingly good

Allows much deeper branching

- for example, if the end-game table encodes a 20-move finish and we can search up to 14
- can search up to depth 34

Stiller (1996) explored all end-games with 5 pieces

- one case check-mate required 262 moves!

Knoval (2006) explored all end-games with 6 pieces

- one case check-mate required 517 moves!

Traditional rules of chess require a capture or pawn move within 50 or it's a stalemate

61

Opening moves

At the very beginning, we're the farthest possible from any goal state

People are good with opening moves

Tons of books, etc. on opening moves

Most chess programs use a database of opening moves rather than search

Nim

K piles of coins

On your turn you must take one or more coins from one pile

Player that takes the last coin wins

Example:

https://www.goobix.com/games/nim/

