

1
from: Claremont to: Rowland Heights
We'd like to bias search towards the actual solution

3

Admin

Assignment 9

Assignment 10

Midterm 2 next Monday
\square Dictionaries (2/21) through today
\square "cheat" sheet - two pages
\square Sample problems posted

2

Informed search

Order to_visit based on some knowledge of the world that estimates how "good" a state is
$\square h(n)$ is called an evaluation function

Best-first search

- rank to_visit based on $h(n)$
- take the most desirable state in to_visit first
\square different approaches depending on how we define $h(n)$

Heuristic function: $h(n)$

An estimate of how close the node is to a goal

Uses domain-specific knowledge!

Examples

- Map path finding?
- straight-line distance from the node to the goal ("as the crow flies")
- 8-puzzle?
- how many tiles are out of place
- sum of the "distances" of the out of place tiles
- Foxes and Chickens?
- number of people on the starting bank

5

Two heuristics

Two heuristics
\qquad2 8 3 1 6 4 7 5
1 2 3 8 4 7 6 5 Goal
What is the "distance" of the tiles
that are out of place?

7

Two heuristics

2	8	3
1	6	4
	7	5

1	2	3
8	6	4
	7	5

Which state is better?

1	2	3
8		4
7	6	5
GOAL		

6	2	3
8		4
7	1	5

7	1	5

OAL

Two heuristics

1	2	3
8		4
7	6	5

Goal

6

8

17

Informed search algorithms

Any other problems/concerns about best first search?

18

Informed search algorithms

Any other problems/concerns about best first search?
\square Only as good as the heuristic function

Best first search using distance as the crow flies as heuristic

What would the search do?

20

Informed search algorithms

Any other problems/concerns about best first search?

- Only as good as the heuristic function

Best first search using distance as the crow flies as heuristic
What is the problem?

21

Informed search algorithms

Best first search is called an "informed" search algorithm

There are many other informed search algorithms: $\square A^{*}$ search (and variants)
\square Theta*
\square Beam search

23

Informed search algorithms

Any other problems/concerns about best first search? - Only as good as the heuristic function

Best first search using distance as the crow flies as heuristic
Doesn't take into account how far it has come.
Best first search is a "greedy" algorithm

22

24

Sudoku
Fill in the grid with the numbers 1-9 \square each row has $1-9$ (without reperition) \square each column has $1-9$ (without repetition) - each quadrant has 1-9 (without repetition)

25

Sudoku

Fill in the grid with the numbers 1-9
\square each row has 1-9 (without repetition)
\square each column has 1-9 (without repetition)

- each quadrant has 1-9 (without repetition)

Sudoku

How can we pose this as a search problem?
State
Start state

Goal state
State space/transitions

Fill in the grid with the numbers 1-9

- each row has 1-9 (without repetition)
\square each column has 1-9 (without repetition)
\square each quadrant has 1-9 (without repetition)
26

28

29

Sudoku

Generate next states:

- pick an open entry
- try all possible numbers that meet constraints
(1) $6,7,9$

Fill in the grid with the numbers 1-9
\square each row has 1-9 (without repetition)
\square each column has $1-9$ (without repetition)
each quadrant has $1-9$ (without repetition)

Sudoku

Generate next states:

- pick an open entry
- try all possible numbers that meet constraints
$1,6,7,9$

Fill in the grid with the numbers 1-9
\square each row has 1-9 (without repetition)

- each column has 1-9 (without repetition)
- each quadrant has 1-9 (without repetition)

30

Sudoku

Generate next states:

- pick an open entry
- try all possible numbers that meet constraints

How many next states?
What are they?

Fill in the grid with the numbers 1-9
\square each row has 1-9 (without repetition)
\square each column has 1-9 (without repetition)

- each quadrant has 1-9 (without repetition)

33

Sudoku

Generate next states:

- pick an open entry
- try all possible numbers that meet constraints

What are the next states?

Fill in the grid with the numbers 1-9

$$
\begin{aligned}
& \square \text { each row has 1-9 (without repetition) } \\
& \square \text { each column has } 1-9 \text { (without repetition) } \\
& \square \text { each quadrant has } 1-9 \text { (without repetition) }
\end{aligned}
$$

Sudoku

Generate next states

- pick an open entry
- try all possible numbers that meet constraints

$$
\text { (2.) } 6,7,8,9
$$

Fill in the grid with the numbers 1-9

- each row has 1-9 (without repetition)
- each column has 1-9 (without repetition)
- each quadrant has 1-9 (without repetition)

34

Sudoku

Generate next states:

- pick an open entry
- try all possible numbers that meet constraints

$$
7,8,9
$$

Fill in the grid with the numbers 1-9
\square each row has 1-9 (without repetition)
\square each column has 1-9 (without repetition)

- each quadrant has 1-9 (without repetition)

36

Sudoku

Generate next states:

- pick an open entry
- try all possible numbers that meet constraints

Fill in the grid with the numbers 1-9

- each row has 1-9 (without repetition)
- each column has 1-9 (without repetition)
- each quadrant has 1-9 (without repetition)

37

Sudoku

Generate next states:

- pick an open entry
- try all possible numbers that meet constraints

Fill in the grid with the numbers 1-9
\square each row has 1-9 (without repetition)
\square each column has 1-9 (without repetition)

- each quadrant has 1-9 (without repetition)

Sudoku

Generate next states:

- pick an open entry
- try all possible numbers that meet constraints

Fill in the grid with the numbers 1-9
\square each row has 1-9 (without repetition)
\square each column has 1-9 (without repetition)
\square each quadrant has 1-9 (without repetition)

38

Sudoku

Generate next states:

- pick an open entry
- try all possible numbers that meet constraints

Now what?

Try another branch, i.e. go back to a place where we had a decision and try a different one

Fill in the grid with the numbers 1-9
\square each row has 1-9 (without repetition)
\square each column has 1-9 (without repetition)

- each quadrant has 1-9 (without repetition)

40

Sudoku

Generate next states:

- pick an open entry
- try all possible numbers that meet constraints

$$
7,8,9
$$

Fill in the grid with the numbers 1-9

- each row has 1-9 (without repetition)
- each column has 1-9 (without repetition)
- each quadrant has 1-9 (without repetition)

41

Best first Sudoku search

DFS and BFS will choose entries (and numbers within those entries) randomly

Pick the entry that is MOST constrained

People often try and find entries where only one option exists and only fill it in that way (very little search)
Generate next states:

- pick an open entry
- try all possible numbers that meet
constraints

43

Best first Sudoku search

DFS and BFS will choose entries (and numbers within those entries) randomly

Is that how people do it?

How do you do it?

Heuristics for best first search? Generate next states:

- pick an open entry
- try all possible numbers that meet constraints

42

44

45

Representing the Sudoku board

$$
\begin{aligned}
& {[1,6,7,9] \quad} \\
& 5, \quad[1,6,7,9], \quad[1,7,9] \\
& \text { What would the state look like if } \\
& \text { we add pick } 1 \text { ? } \\
& \square \text { Board is a matrix (list of lists) } \\
& \square \text { Each entry is a SudokuEntry: } \\
& \text { - "fixed" if it has a number place } \\
& \text { - if not, then keeps a list of values still available }
\end{aligned}
$$

46

Representing the Sudoku board

48

49

