

1

A quick review of search

Problem solving via search:

- To define the state space, define three things:
- is_goal
- next_states
- starting state

Uninformed search vs. informed search

- what's the difference?
- what are the techniques we've seen?
- pluses and minuses?

3

Admin

Assignment 10
Adversarial Search

CS51A
David Kauchak
Spring 2022

2

Why should we study games?

Clear success criteria

Important historically for Al

Fun ©

Good application of search

- hard problems (chess 35^{100} states in search space, 10^{40} legal states)

Some real-world problems fit this model

- game theory (economics)
- multi-agent problems

4

5

7

Types of games: game properties

single-player vs. 2-player vs. multiplayer
Fully observable (perfect information) vs. partially observable

Discrete vs. continuous
real-time vs. turn-based
deterministic vs. non-deterministic (chance)

6

Strategic thinking $\stackrel{?}{=}$ intelligence

Humans and computers have different relative strengths in these games:
humans

computers
?

8

9

How humans play games...

An experiment was performed in which chess positions were shown to novice and expert players...

- experts could reconstruct these perfectly
- novice players did far worse...

10

How humans play games...

Random chess positions (not legal ones) were then shown to the two groups

experts and novices did just as badly at reconstructing them!

13

Tic Tac Toe as search

15

Tic Tac Toe as search

If we want to write a program to play tic tac toe, what question are we trying to answer?

Given a state (i.e. board configuration), what move should we make!

14

Tic Tac Toe as search

16

19

20

21

I'm X, what will ' O ' do?

[^0]23

Minimizing risk
The computer doesn't know what move O (the opponent) will make

It can assume that it will try and make the best move possible

Even if O actually makes a different move, we're no worse off. Why?

24

Optimal Strategy

An Optimal Strategy is one that is at least as good as any other, no matter what the opponent does

- If there's a way to force the win, it will
- Will only lose if there's no other option

25

27

Idea:

- define a function that gives us a "score" for how good each state is
- higher scores mean better

26

Defining a scoring function

Opponent's (O) turn

What should be the score of this state?
-1: opponent can get to a win

28

29

31

Defining a scoring function

What should be the score of this state?

30

[^0]: qq12314567890-l]’;|kjhgfdsazzxvbbbvnm,./

