4/4/22

Admin

[
Assignment 9

SEARCH

David Kauchak
CS51A — Spring 2022

1 2
Search algorithm Search algorithms

5 | 5 |
Keep track of a list of states that we could visit, we'll add the start state to to_visit

call it “to_visit”

Repeat

neral i : -
General idea O take a state off the to_visit list

o take a state off the to_ visit list O if if's the goal state

o if it's the goal state
= we're done!

= we're done!

. 1 if it's not the goal state
o if it's not the goal state

= Add all of the next states to the to_visit list
o repeat Two variants: breadth first search (BFS) and depth first search
(DFS) depending on whether we use a stack or a queue for
to_visit. Which is which?

u Add all of the next states to the to_visit list

4/4/22

Search algorithms
add the start state to to_visit

Repeat
take a state off the to_visit list
if it’s the goal state
= we're done!

if it’s not the goal state
u Add all of the next states to the to_visit list

Depth first search (DFS): to_visit is a stack
Breadth first search (BFS): to_visit is a queue

Implementing the state space

|
What the “world” (in this case a maze) looks like
We'll define the world as a collection of discrete states

States are connected if we can get from one state to
another by taking a particular action

This is called the “state space”

. . .
Implementing state space Search variants implemented
|] |
3 ” [H o .
What the “world” (in this case a maze) looks like add the start state fo fo_visit | 97 :f:(;;c:g;()state).
We'll define the world as a collection of discrete states return search(start_state, s)
States are connected if we can get from one state to Repeat def bfs(start_state):
. . . P q = Queue()
another by taking a particular action take a state off the to_visit list return search(start_state, q)
This is called the “state space” if it's the goal state def search(start_state, to_visit):
= we're done! to_visit.add(start_state)
State: if it’s not the goal state while not to_visit.is_empty():
i f = Add all of the successive states current = to_visit.remove()
* Is this the goal state? (is_goal) o the fo, visi list Lt corrent.is.goa10)
. if cu .is_¢ H
¢ What states are connected to this state? (next states) return current
else:
for s in current.next_states():
to_visit.add(s)
return None

What order would this variant visit the states?

def search(state):
if state.is_goal():

return state
else:

i
EIE]

for s in state.next_states():
result = search(s)
if result != None:
return result

return None

1,2,5

)

s| [l [7]]e

What order would this variant visit the states?

def search(state):
if state.is_goal():
return state
else:
for s in state.next_states():
result = search(s)
if result != None:
return result

2/ 3

return None

5] o] 17
|

1,2,53,6,9,7,8

What search algorithm is this?

10

What order would this variant visit the states?

def search(state):
if state.is_goal():
return state
else:
for s in state.next_states():
result = search(s)
if result != None:
return result

i
2] 3] 4

return None

1,2,53,6,9,7,8

]

DFS!

11

s| [l 78

DFS with a stack

add the start state to to_visit

Repeat

take a state off the to_visit list
if it's the goal state
we're done!

if it's not the goal state

5| o] 17
|

Add all of the successive states to the to_visit list

Depth first search (DFS): to_visit is a stack
Breadth first search (BFS): to_visit is a queue

12

4/4/22

4/4/22

DFS with a stack
|]
DFS: 1,4,3,8,7,6,9,2,5 m
2/ [3
Depth first search (DFS): to_visit is a stack @
Breadth first search (BFS): to_visit is a queue

def

One last DFS variant

def dfs(state):
if state.is_goal(): if state.is_goal():
return state return [state]
else: else:
for s in state.next_states(): result = []
result = search(s)
if result != None:
return result

search(state):

result += dfs(s)

return None return result

How is this different?

for s in state.next_states():

13

14

One last DFS variant
[

def search(state): def dfs(state):
if state.is_goal(): if state.is_goal():
return state return [state]
else: else:
for s in state.next_states(): result = []
result = search(s)
if result != None:

for s in state.next_states():
return result

result += dfs(s)

return None return result

Returns ALL solutions
found, not just one

Matrices!

15

16

4/4/22

N-queens problem N-queens problem
|] |
Place N queens on an N by N chess board such that Place N queens on an N by N chess board such that
none of the N queens are attacking any other queen. none of the N queens are attacking any other queen.
B W w
N B L L
B w w -
Solution(s)?
17 18
N-queens problem N-queens problem
|] |
Place N queens on an N by N chess board such that Place N queens on an N by N chess board such that
none of the N queens are attacking any other queen. none of the N queens are attacking any other queen.
How do we solve this with search:
l.l.l.l.
i 2
EEEE What is a state?
.l.l.l.l
What is the start state?
.l.l.l.l
H H BB What is the goal?
Solution(s)2 How do we transition from one state to the next?
19 20

4/4/22

Search algorithm
add the start state to to_visit

Repeat
take a state off the to_visit list
if it's the goal state s this a goal state?
» we're done!
if it's not the goal state What states can | get to from the current state?
m Add all of the next states to the to_visit list

Any problem that we can define these three things
can be plugged into the search algorithm!

N queens problem

21

22

http://en.wikipedia.org/wiki/Eight_queens_puzzle

