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Perceptron learning algorithm

initialize weights of the model randomly

repeat until you get all examples right:

- for each “training” example (in a random order):
-calculate current prediction on the example
-if wrong:

wi = wi + λ * (actual - predicted) * xi



Perceptron learning

A few missing details, but not much more than this

Keeps adjusting weights as long as it makes mistakes

If the training data is linearly separable, the perceptron 
learning algorithm is guaranteed to converge to the 
“correct” solution (where it gets all examples right)



Linearly Separable
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A data set is linearly separable if you can 
separate one example type from the other 
with a line.

Which of these are linearly separable?
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Learning in multilayer networks
Similar idea as perceptrons

Examples are presented to the network

If the network computes an output that matches 
the desired, nothing is done

If there is an error, then the weights are adjusted to 
balance the error



Learning in multilayer networks
Key idea for perceptron learning: if the perceptron’s output 
is different than the expected output, update the weights

Challenge: for multilayer networks, we don’t know what the 
expected output/error is for the internal nodes

perceptron multi-layer network

expected output?



Backpropagation
Say we get it wrong, and we now want to update the weights

We can update this layer just as 
if it were a perceptron



Backpropagation
Say we get it wrong, and we now want to update the weights

“back-propagate” the error (actual – predicted):

Assume all of these nodes were responsible for 
some of the error

How can we figure out how much they were 
responsible for?



Backpropagation
Say we get it wrong, and we now want to update the weights

error (actual – predicted)

w1
w2 w3

error for node i is: wi error



Backpropagation
Say we get it wrong, and we now want to update the weights

Update these weights and 
continue the process back 
through the network



Backpropagation
calculate the error at the output layer

backpropagate the error up the network

Update the weights based on these errors

Can be shown that this is the appropriate thing to do based 
on our assumptions

That said, many neuroscientists don’t think the brain does 
backpropagation of errors



Neural network regression
Given enough hidden nodes, you can learn any
function with a neural network

Challenges:
¨ overfitting – learning only the training data and not 

learning to generalize

¨ picking a network structure

¨ can require a lot of tweaking of parameters, 
preprocessing, etc.



Handwritten digits (MNIST)



Summary

Perceptrons, one-layer networks, are insufficiently 
expressive

Multi-layer networks are sufficiently expressive and 
can be trained by error back-propagation

Many applications including speech, driving, hand-
written character recognition, fraud detection, 
driving, etc.



Our python NN module
Data:

x1 x2 x3 y

0 0 0 1
0 1 0 0

1 0 0 1

1 1 0 0

0 0 1 1
0 1 1 1

1 0 1 1

1 1 1 0

table = \
[ ([0.0, 0.0, 0.0], [1.0]),
([0.0, 1.0, 0.0], [0.0]),
([1.0, 0.0, 0.0], [1.0]),
([1.0, 1.0, 0.0], [0.0]),
([0.0, 0.0, 1.0], [1.0]),
([0.0, 1.0, 1.0], [1.0]),
([1.0, 0.0, 1.0], [1.0]),
([1.0, 1.0, 1.0], [0.0]) ]



Data format

table = \
[ ([0.0, 0.0, 0.0], [1.0]),
([0.0, 1.0, 0.0], [0.0]),
([1.0, 0.0, 0.0], [1.0]),
([1.0, 1.0, 0.0], [0.0]),
([0.0, 0.0, 1.0], [1.0]),
([0.0, 1.0, 1.0], [1.0]),
([1.0, 0.0, 1.0], [1.0]),
([1.0, 1.0, 1.0], [0.0]) ]

list of examples

( [0.0, 0.0, 0.0], [1.0] )
input list output list

example = tuple



Training on the data

Construct a new network:
>>> nn = NeuralNet(3, 2, 1)

constructor: constructs a 
new NN object

input nodes

hidden nodes

output nodes



Training on the data

Construct a new network:
>>> nn = NeuralNet(3, 2, 1)

3 input nodes 2 hidden nodes

1 output node



Training on the data
>>> nn.train(table)
error 0.195200      
error 0.062292      
error 0.031077      
error 0.019437      
error 0.013728      
error 0.010437      
error 0.008332      
error 0.006885      
error 0.005837      
error 0.005047

by default, trains 1000 iterations and prints out 
error values every 100 iterations



After training, can look at the weights

>>> nn.train(table)
>>> nn.get_IH_weights()
[[ [w1a, w1b, w1c], 

[w2a, w2b, w2c] ], 
[b1, b2]]



After training, can look at the weights

>>> nn.get_HO_weights()
[[ [w1a, w1b] ], 

[b1]]



Many parameters to play with
def train(data,

learning_rate=0.01,
iterations=1000, print_interval=100)

nn.train(training_data) carries out a training cycle. As specified earlier, 
the training data is a list of input-output pairs. There are three optional arguments 
to the train function.

learning_rate defaults to 0.01
iterations defaults  to 1000. It specifies the number of passes over the training 
data
print_interval defaults to 100. The value of the error is displayed after 
print_interval passes over the data; we hope to see the value decreasing. 
Set the value to 0 if you do not want to see the error values.



Calling with optional parameters

>>> nn.train(table, iterations = 5, 
print_interval = 1)
error 0.005033      
error 0.005026      
error 0.005019      
error 0.005012      
error 0.005005



Optional parameters

See:

https://cs.pomona.edu/classes/cs51a/examples/optional_parameters.txt



Optional parameters

Check out the constructor (__init__ function) of NeuralNet
for another interesting optional parameter: activation
function!

It may be worth experimenting with different activation 
functions to see what happens to accuracy and run time...



Train vs. test
TrainData TestData

>>> nn.train(trainData)
>>> nn.test(testData)


