
Backpropogation

Dave Kauchak
Alexandra Papoutsaki
Zilong Ye
CSCI 051A
Spring 2022

Perceptron learning algorithm

initialize weights of the model randomly

repeat until you get all examples right:

- for each “training” example (in a random order):
-calculate current prediction on the example
-if wrong:

wi = wi + λ * (actual - predicted) * xi

Perceptron learning

A few missing details, but not much more than this

Keeps adjusting weights as long as it makes mistakes

If the training data is linearly separable, the perceptron
learning algorithm is guaranteed to converge to the
“correct” solution (where it gets all examples right)

Linearly Separable
x1 x2 x1 and x2
0 0 0

0 1 0

1 0 0

1 1 1

x1 x2 x1 or x2
0 0 0

0 1 1

1 0 1

1 1 1

x1 x2 x1 xor x2
0 0 0

0 1 1

1 0 1

1 1 0

A data set is linearly separable if you can
separate one example type from the other
with a line.

Which of these are linearly separable?

x1 x2 x1 and x2
0 0 0

0 1 0

1 0 0

1 1 1

x1

x2

x1 x2 x1 or x2
0 0 0

0 1 1

1 0 1

1 1 1

x1

x2

x1 x2 x1 xor x2
0 0 0

0 1 1

1 0 1

1 1 0

x1

x2

Which of these are linearly separable?

x1 x2 x1 and x2
0 0 0

0 1 0

1 0 0

1 1 1

x1

x2

x1 x2 x1 or x2
0 0 0

0 1 1

1 0 1

1 1 1

x1

x2

x1 x2 x1 xor x2
0 0 0

0 1 1

1 0 1

1 1 0

x1

x2

Which of these are linearly separable?

XOR
Input x1

Input x2

?

?
?

?

T = ?

T = ?

T = ?
?

?

x1 x2 x1 xor x2
0 0 0
0 1 1
1 0 1
1 1 0

Output = x1 xor x2

XOR
Input x1

Input x2

1

-1
-1

1

T = 1

T = 1

T = 1
1

1

x1 x2 x1 xor x2
0 0 0
0 1 1
1 0 1
1 1 0

Output = x1 xor x2

Learning in multilayer networks
Similar idea as perceptrons

Examples are presented to the network

If the network computes an output that matches
the desired, nothing is done

If there is an error, then the weights are adjusted to
balance the error

Learning in multilayer networks
Key idea for perceptron learning: if the perceptron’s output
is different than the expected output, update the weights

Challenge: for multilayer networks, we don’t know what the
expected output/error is for the internal nodes

perceptron multi-layer network

expected output?

Backpropagation
Say we get it wrong, and we now want to update the weights

We can update this layer just as
if it were a perceptron

Backpropagation
Say we get it wrong, and we now want to update the weights

“back-propagate” the error (actual – predicted):

Assume all of these nodes were responsible for
some of the error

How can we figure out how much they were
responsible for?

Backpropagation
Say we get it wrong, and we now want to update the weights

error (actual – predicted)

w1
w2 w3

error for node i is: wi error

Backpropagation
Say we get it wrong, and we now want to update the weights

Update these weights and
continue the process back
through the network

Backpropagation
calculate the error at the output layer

backpropagate the error up the network

Update the weights based on these errors

Can be shown that this is the appropriate thing to do based
on our assumptions

That said, many neuroscientists don’t think the brain does
backpropagation of errors

Neural network regression
Given enough hidden nodes, you can learn any
function with a neural network

Challenges:
¨ overfitting – learning only the training data and not

learning to generalize

¨ picking a network structure

¨ can require a lot of tweaking of parameters,
preprocessing, etc.

Handwritten digits (MNIST)

Summary

Perceptrons, one-layer networks, are insufficiently
expressive

Multi-layer networks are sufficiently expressive and
can be trained by error back-propagation

Many applications including speech, driving, hand-
written character recognition, fraud detection,
driving, etc.

Our python NN module
Data:

x1 x2 x3 y

0 0 0 1
0 1 0 0

1 0 0 1

1 1 0 0

0 0 1 1
0 1 1 1

1 0 1 1

1 1 1 0

table = \
[([0.0, 0.0, 0.0], [1.0]),
([0.0, 1.0, 0.0], [0.0]),
([1.0, 0.0, 0.0], [1.0]),
([1.0, 1.0, 0.0], [0.0]),
([0.0, 0.0, 1.0], [1.0]),
([0.0, 1.0, 1.0], [1.0]),
([1.0, 0.0, 1.0], [1.0]),
([1.0, 1.0, 1.0], [0.0])]

Data format

table = \
[([0.0, 0.0, 0.0], [1.0]),
([0.0, 1.0, 0.0], [0.0]),
([1.0, 0.0, 0.0], [1.0]),
([1.0, 1.0, 0.0], [0.0]),
([0.0, 0.0, 1.0], [1.0]),
([0.0, 1.0, 1.0], [1.0]),
([1.0, 0.0, 1.0], [1.0]),
([1.0, 1.0, 1.0], [0.0])]

list of examples

([0.0, 0.0, 0.0], [1.0])
input list output list

example = tuple

Training on the data

Construct a new network:
>>> nn = NeuralNet(3, 2, 1)

constructor: constructs a
new NN object

input nodes

hidden nodes

output nodes

Training on the data

Construct a new network:
>>> nn = NeuralNet(3, 2, 1)

3 input nodes 2 hidden nodes

1 output node

Training on the data
>>> nn.train(table)
error 0.195200
error 0.062292
error 0.031077
error 0.019437
error 0.013728
error 0.010437
error 0.008332
error 0.006885
error 0.005837
error 0.005047

by default, trains 1000 iterations and prints out
error values every 100 iterations

After training, can look at the weights

>>> nn.train(table)
>>> nn.get_IH_weights()
[[[w1a, w1b, w1c],

[w2a, w2b, w2c]],
[b1, b2]]

After training, can look at the weights

>>> nn.get_HO_weights()
[[[w1a, w1b]],

[b1]]

Many parameters to play with
def train(data,

learning_rate=0.01,
iterations=1000, print_interval=100)

nn.train(training_data) carries out a training cycle. As specified earlier,
the training data is a list of input-output pairs. There are three optional arguments
to the train function.

learning_rate defaults to 0.01
iterations defaults to 1000. It specifies the number of passes over the training
data
print_interval defaults to 100. The value of the error is displayed after
print_interval passes over the data; we hope to see the value decreasing.
Set the value to 0 if you do not want to see the error values.

Calling with optional parameters

>>> nn.train(table, iterations = 5,
print_interval = 1)
error 0.005033
error 0.005026
error 0.005019
error 0.005012
error 0.005005

Optional parameters

See:

https://cs.pomona.edu/classes/cs51a/examples/optional_parameters.txt

Optional parameters

Check out the constructor (__init__ function) of NeuralNet
for another interesting optional parameter: activation
function!

It may be worth experimenting with different activation
functions to see what happens to accuracy and run time...

Train vs. test
TrainData TestData

>>> nn.train(trainData)
>>> nn.test(testData)

