
CS051A

INTRO TO COMPUTER SCIENCE WITH TOPICS IN AI
7: Boolean variables, aliasing, and parameter
passing

Alexandra Papoutsaki

she/her/hers

Lectures

02-09-2022

David Kauchak

he/him/his

Lectures

Zilong Ye

he/him/his

Labs

[record lecture on Zoom]

Welcome to lecture 7! We are officially together until the end of March :) Thank you for your willingness to help our department as we try to grow; your feedback about the
past lecturers is extremely useful and important as we hope to grow the CS department.

TODAY’S LECTURE IN A NUTSHELL

Lecture 7: Boolean variables, aliasing, and parameter passing	

▸ Python function calls

▸ Booleans

▸ Sequences

▸ Aliasing

▸ Parameter Passing

2

Today, we will wrap up Lecture 6 by talking about tuples that you saw with Prof Ye in the lab. We will then get into a number of topics that will deepen our understanding
of Python and programming languages in general. The first one will tackle the flow of our Python programs when we call functions.

PYTHON FUNCTION CALLS

What happens when a function gets called?

3

▸ Let’s look at this simple file function-calls.py

▸ We can walkthrough what happens when we make a call to add_then_double, e.g.,
add_then_double(10, 20)

▸ 1. The arguments to the function (10 and 20) are evaluated.

▸ They could have been more complicated expressions, e.g., add_then_double(5+5,
40/2)

▸ 2. The function is then called and the parameters are associated with the arguments that are
passed in. Think of it like saying a = 10 and b = 20.

▸ We now have two variables in the function that have the values of the arguments.

▸ The only tricky thing is that these variables are unique to this function, so even if they're
defined globally (outside any function), they will be different than the global variables.

Let’s start by looking at the file function-calls.py. We can see that there is a function called add_then_double. Let’s see what happens when we call
add_then_double(10, 20). First, the arguments to the function (10 and 20) are evaluated. Notice that they could have been more complicated expressions that we pass as
arguments, e.g., add_then_double(5+5, 40/2).

Second, the function is then called and the parameters are associated with the arguments that are passed in. Think of it like saying a = 10 and b = 20.

We now have two variables in the function that have the values of the arguments.

The only tricky thing is that these variables are unique to this function, so even if they're defined globally (outside any function), they will be different than the global
variables.

https://cs.pomona.edu/classes/cs51a/examples/function-calls.txt

PYTHON FUNCTION CALLS

What happens when a function gets called? (cont’d)

4

▸ 3. The function body for add_then_double is executed one statement at a time.

▸ This will in turn call add(a, b). Like any other function call, we:

▸ evaluate the arguments, in this case, we evaluated a, which gives us 10, and b, which gives us 20,

▸ we then pass these values to add and associate them with parameters num1 and num2.

▸ add is only one line of code, it adds the number and then returns that value.

▸ num1 + num2 gives us 30 (10 + 20)

▸ the return statement means wherever this function was called, that is the value that call should represent.

▸ the call add(a, b) will then represent the value 30

▸ We then assign what add(a,b) returns to the variable added.

▸ double is called with what was in the variable added (30) and following the same logic as above gives us back
60

▸ 60 is then associated with the variable doubled.

▸ Finally, add_then_double returns doubled, which has the value 60.

The third step includes the execution of the add_then_double body, one statement at a time.

This will in turn call add(a, b). Like any other function call, we will start by evaluating the arguments (in this case, we evaluated a, which gives us 10, and b, which gives us
20). We then pass these values to add and associate them with parameters num1 and num2. add is only one line of code, it adds the number and then returns that value.
num1 + num2 gives us 30 (10 + 20). The return statement means wherever this function was called, that is the value that call should represent. The call add(a, b) will then
represent the value 30. We then assign what add(a,b) returns to the variable added. Then function double is called with what was in the variable added (30) and following
the same logic as above gives us back 60. 60 is then associated with the variable doubled. Finally, add_then_double returns doubled, which has the value 60.

PYTHON FUNCTION CALLS

What happens when a function gets called? (cont’d)

5

▸ If we called add_then_double from the Python console/shell, we will see the value 60 echoed,
not because it was printed out but because that call (add_then_double(10, 20)) now
represents the value 60.

▸ We could just have easily done other things with it, e.g.,

If we called add_then_double from the Python console/shell, we will see the value 60 echoed, not because it was printed out but because that call (add_then_double(10,
20)) now represents the value 60. But we could have easily done more complex things with our calls.

TODAY’S LECTURE IN A NUTSHELL

Lecture 7: Boolean variables, aliasing, and parameter passing	

▸ Python function calls

▸ Booleans

▸ Sequences

▸ Aliasing

▸ Parameter Passing

6

We will switch gears now and talk about booleans which we have seen that are represented with the type bool.

BOOLEANS

Practice time

7

▸ Write a method called contains that takes a list and an item and returns True if the item is in the list, False otherwise, i.e. def contains(some_list, value):

▸ Look at the contains function in contains.py file

▸ Loops through each value in the list.

▸ If it finds one that is equal to the item we're looking for, then return True

▸ Remember that return immediately exits the function. This will stop the loop and then give back True from the function.

▸ if we make it through the entire list without finding one that's equal, then the loop will finish and we'll return False.

▸ This is similar to the isprime function we saw before in while.py code

▸ The contains_alternative function in contains.py code is another way of accomplishing this.

▸ We use a variable found to keep track of whether or not we've found the item and we initialize to False.

▸ We then loop through all of the values of the list.

▸ If we find the item we're looking for, we set the variable found to True

▸ it's fine to set found to True again if the item exists multiple times in the list.

▸ After the loop finishes, we return found

▸ If we didn't find any, it will still be False, otherwise, it will have been set to True.

To practice, let’s start by writing a method contains that will take as a parameter a list and an item and will return True if the item is in the list and False otherwise. You can
look at the file contains.py to see two versions of contains that use a similar idea (a while loop) to go over the list and compare each of the elements of the list with the
provided item. The difference is that in the second version we will use an intermediate bool variable to keep track of whether we have located the item while in the first
version, we will return True/False directly.

https://cs.pomona.edu/classes/cs51a/examples/contains.txt
https://cs.pomona.edu/classes/cs51a/examples/while.txt
https://cs.pomona.edu/classes/cs51a/examples/contains.txt

BOOLEANS

Built-in contains functionality

8

▸ Python has a built-in contains functionality in the form
of the in keyword that works for lists, strings, and
tuples (i.e. sequences).

▸ Notice that for lists, the item has to be in the list as one
of the individual items, we cannot check for a slice.

▸ But this is not a problem in strings. We can check
whether a string contains an entire substring not just a
single character.

Actually, Python has a built-in contains functionality in the form of the in keyword that works for all sorts of sequences. Notice that in behaves slightly differently in lists
and strings when it comes to searching for multiple elements.

BOOLEANS

number-game.py

9

▸ Picks a random number between 1 and 20 and keeps prompting the user to guess it until they get it
right.

▸ It provides hints as to whether they need to guess higher or lower.

▸ How can we implement this game?

▸ We can pick a random guess that the user will have to guess.

▸ As long as (while) the user hasn't guessed the right answer:

▸ Ask the user for their guess.

▸ If it’s the right answer, print out “Good job!” and somehow indicate that we’re done looping.

▸ Otherwise, if the guess is too low print out (“A bit higher”).

▸ Otherwise (i.e. th guess must be too high), print out (“A bit lower”).

Time to play a game! If we run at the number-game.py file, we will see that it picks a random number between 1 and 20 and asks us to guess it by giving us hints until we
get it :) (what a nice game!).

https://cs.pomona.edu/classes/cs51a/examples/number-game.txt

BOOLEANS

number_guessing_game function in number-game.py

10

▸ Uses a variable called correct and initially sets it to False.

▸ Repeats the same steps while correct remains False (while not correct:).

▸ We could have also use a variable like still_guessing and set it to True and then had
while still_guessing:

▸ When the user guesses the right number, we set correct to True and therefore exit the loop.

▸ Notice that there are other ways of writing this function, e.g., number_guessing_game2

If we look at how the game is actually implemented, we will notice a number_guessing_game function that uses a variable set to False and a while loop that keeps
checking whether that variable has been changed to True. If not, it will keep prompting us to keep making guesses and it will give us hints as we provide our guess.
Notice that there are other ways of writing this function, e.g., number_guessing_game2

https://cs.pomona.edu/classes/cs51a/examples/number-game.txt

TODAY’S LECTURE IN A NUTSHELL

Lecture 7: Boolean variables, aliasing, and parameter passing	

▸ Python function calls

▸ Booleans

▸ Sequences

▸ Aliasing

▸ Parameter Passing

11

Let’s go back momentarily into sequences, data structures that store data sequentially (e.g., lists, strings, tuples).

SEQUENCES

A few more sequence operators

12

▸ We've seen + for concatenating strings.
It also works on other sequences!

▸ What do you think sequence*x does?

▸ Repeats the sequence x times

We have seen that strings can be concatenated with the + operator. We can apply the same operator for all types of sequences. Another operator that might come handy
is the * which repeats the sequence as many times as we tell it. Cool, huh?

TODAY’S LECTURE IN A NUTSHELL

Lecture 7: Boolean variables, aliasing, and parameter passing	

▸ Python function calls

▸ Booleans

▸ Sequences

▸ Aliasing

▸ Parameter Passing

13

We’re pivoting now to a very different topic called aliasing.

ALIASING

Assignment (i.e. =)

14

▸ when we say x = y, what we're
actually saying is let x reference the
same thing that y references.

▸ x and y are still separate variables.

▸ If we say x = z that does NOT change
the value of y.

Let’s start with the basics of assignment which we have seen that is accomplished with the =. When we say x = y, what we’re actually saying is let x reference the same
thing that y references. But x and y are still separate variables. If we say now x = z, y will remain unaffected.

ALIASING

References

15

▸ Objects reside in memory. Anytime we create an int, float, bool, str, list, tuple it is allocated in memory.

▸ Variables are references to objects in memory. A variable does NOT hold the value itself, but it is a references to
where that value resides.

▸ Think of variables like your hands. You can point them at things and then ask questions:

▸ what is the name of the thing that my right hand points to?

▸ for the thing that my left hand points to, do something?

▸ You can point them to new things (i.e. assignment)

▸ You can point point them to the same thing (i.e. assignment one to the other) but they are separate things!

▸ Similarly, variables are separate things. They can reference the same thing, but they are not the same thing.

▸ When you ask for the value of a variable, it's actually getting the value of the things it references in memory

In general, all objects we create reside in memory. Variables are actually just references to objects in memory. You can think of variables as your arms (imagine having as
many arms as there are variables in your program). When we assign a value to a variable, we point the variable to a memory location that stores that information.

ALIASING

Objects in memory

16

▸ If an object is mutable (i.e. it has methods that change the object), then we have to be careful
when we have multiple things referencing the same object (this is called aliasing).

▸ what does this look like in memory?

▸ There is one list object. Both x and y are references to that same object.

Remember that some objects can be mutable? That is they have methods (special functions called with the dot operator) that change them. In this case, we have to be
careful when we have multiple things referencing the same object. This is called aliasing.

ALIASING

Aliasing

17

▸ What happens when I call a method that
changes/mutates the object?

▸ x and y are references to the same object!
Statements that mutate the object that are done
on either variable will affect this object.

Look at the examples on the right. What x and y will point to might or might not surprise you.

ALIASING

ints/floats/bools/strings

18

▸ Why hasn’t aliasing come up with ints/floats/bools/strings if they are objects?

▸ what does the memory picture look like?

▸ We just have one int object!

▸ x and y are both references to that one int object

▸ int/float/bool/str types are not mutable!

▸ There is no way for us to change the underlying object. Therefore, even though two
variables reference the same int, it's as if they referenced separate ints.

Aliasing comes up only with mutable objects (i.e. lists in our case). Any other type we have seen is immutable. If you take an int object, let’s say the number 10, there’s
only one 10 in memory. Both x and y will point to that same 10 and they can’t change it but they can point to a different number if we reassign them.

ALIASING

Practice time

19

▸ Draw the memory picture for the following:

▸ We now have 2 objects (10 and 15). Just like with lists, changing what y references does not
affect x.

This affects what our memory allocation looks like when we run the example above.

TODAY’S LECTURE IN A NUTSHELL

Lecture 7: Boolean variables, aliasing, and parameter passing	

▸ Python function calls

▸ Booleans

▸ Sequences

▸ Aliasing

▸ Parameter Passing

20

Finally, I want to talk about parameter passing which is central to working with functions.

PARAMETER PASSING

Parameter passing

21

▸ When we define a function's parameters we are defining the "formal parameters”.

▸ a and b are formal parameters. Until the function is actually called, they don't represent actual values.

▸ When we call a function, the values that we give to the function are called the "actual parameters" or
arguments.

▸ The values 10 and 20 are the actual parameters (or similarly, x and y become the arguments)

We have already talked about parameters and arguments. Parameters are also called formal parameters and arguments actual parameters.

PARAMETER PASSING

When a function is called the following happens

22

▸ The values of the arguments are determined (we evaluate the expression representing each
parameter).

▸ The value is just an object (could be an int, float, str, etc).

▸ These values are then "bound" or assigned to the formal parameters

▸ It's very similar to assignment.

▸ The formal parameters represent new variables.

▸ the formal parameters will then REFERENCE the same objects as those passed in
through the arguments/actual parameters.

When a function is called, the values of the arguments are determined and then they are bound to the formal parameters, similar to assignment.

PARAMETER PASSING

Referencing

23

▸ Let’s consider the picture for the following code.

▸ x and y are both references to int objects.

▸ When we call my_function, the formal parameters a and b, will represent two new variables.
These variables will reference the same thing as their actual parameters.

▸ Think of it like running the statements: a = x and b = y.

▸ a will reference the same thing as x

▸ b will reference the same thing as y

In the example above, both x and y are references to int objects. When we call my_function, the formal parameters a and b, will represent two new variables. These
variables will reference the same thing as their actual parameters.

PARAMETER PASSING

(Im)mutability and referencing

24

▸ For immutable objects, this whole story doesn't really matter. They
could be references to the same thing or copies but if we can't mutate
the object, the behavior is the same.

▸ How does this change for mutable objects, such as lists?

▸ x was a variable that references a list object

▸ When the function was called, the formal parameter numbers will
represent a new variable.

▸ numbers will reference the same thing as x.

▸ Think of it like running the statement

▸ numbers = x

▸ Because lists are mutable and since the formal parameter
references the same object as what was passed in, changes made
to the object referenced by numbers will also be seen in x.

For immutable objects, this whole story doesn't really matter. They could be references to the same thing or copies but if we can't mutate the object, the behavior is the
same. The story is different for mutable objects such as lists. Look at the changer function which alters the first element in the list numbers (therefore it alters what x
points to).

PARAMETER PASSING

(Im)mutability and referencing

25

▸ Notice, however, that operations that do not change/mutate the
object will NOT be seen outside the function

▸ In this case, we're assigning numbers to some new object
(list).

▸ We can't change what x references!

▸ x and numbers will no longer reference the same object.

▸ Any changes to numbers after this will not affect x.

▸ Variable assignment and parameter passing is done based on
the references (i.e. a shallow copy) rather than a deep copy of
the whole object.

▸ Performance (it takes work to copy the object).

▸ Often, we just want the value and don't need to mutate the
underlying object.

In contrast, the function no_changer, changes the reference of numbers to a new list altogether. Now x and numbers no longer point to the same part of memory! In
general, parameter passing is done based on the references (i.e. a shallow copy) rather than a deep copy of the whole object. There are performance and other reasons
that we might not want to mutate the underlying object.

ASSIGNED READINGS AND PRACTICE PROBLEMS

Resources

▸ Textbook: Chapters 6

▸ function-calls.py

▸ contains.py

▸ number-game.py

26

Homework
▸ Assignment 3 (in progress)

https://runestone.academy/ns/books/published/thinkcspy/Functions/toctree.html
https://cs.pomona.edu/classes/cs51a/examples/function-calls.txt
https://cs.pomona.edu/classes/cs51a/examples/contains.txt
https://cs.pomona.edu/classes/cs51a/examples/number-game.txt

