
CS051A 

INTRO TO COMPUTER SCIENCE WITH TOPICS IN AI

6: Sequences

Alexandra Papoutsaki


she/her/hers


Lectures

02-07-2022

David Kauchak


he/him/his


Lectures

Zilong Ye


he/him/his


Labs



TODAY’S LECTURE IN A NUTSHELL

Lecture 6: Sequences

▸ Lists


▸ Sequences


▸ Tuples

2



LISTS

scores-list.py

3

▸ A program that contains a set of functions for reading in 
scores and calculating various statistics on them.

https://cs.pomona.edu/classes/cs51a/examples/scores-lists.txt


LISTS

scores-list.py - What does it do?

4

▸ First, it prompts the user to enter a list of scores one at a time


▸ Uses a while loop that keeps asking the user for a new score. What is the exit condition?


▸ Checks to see if the line is empty: while line != ""

▸ Then, calculate various statistics based on what was entered. How are we calculating these statistics?


▸ Average?


▸ We could keep track of the sum and the total number of scores entered and divide them at the end.


▸ Max (min)?


▸ Keep track of the largest (smallest) score seen so far. Each time a new one is entered, see if it's larger (smaller). If so, update the 
largest (smallest).


▸ Median?


▸ The challenge with median is that we can't calculate it until we have all of the scores. We need to sort them and then find the 
middle score.


▸ Why can't we do this using int/float variables?


▸ We don't know how many scores are going to be entered. Even if we did, if we had 100 students in the class, we'd need 100 
variables!

https://cs.pomona.edu/classes/cs51a/examples/scores-list.txt


LISTS

Lists

5

▸ List: a data structure.


▸ Data structure: a way of storing and 
organizing data.


▸ Lists allow us to store multiple values 
using only a single variable to refer to 
them!


▸ Creating lists: provide elements 
separated by comma and enclosed in 
square brackets.


▸ Lists are a type and represent a value, just 
like float, int, bool and str. We can 
assign them to variables, print them, etc.



LISTS

Accessing Lists

6

▸ []: creates an empty list.


▸ We can access a particular value in the 
list by using the [] to "index" into the 
list.


▸ Indexing starts at 0!


▸ Be careful of index out of range errors!


▸ We can only index from 0…
length-1.


▸ Negative indexing counts back from 
the end of the list.



LISTS

Storing other things in lists

7

▸ A list is a contiguous set 
of spaces in memory.


▸ [ _ , _ , _ , _ ]

▸ We can store anything 
in each of these spaces.


▸ In general, it's a good 
idea to have lists be 
homogeneous, i.e. be of 
the same type.



LISTS

Slicing

8

▸ Sometimes, we want more than just one 
item from the list (this is called slicing).


▸ We can specify a range in the square 
brackets, [], using the colon (:)


▸ list[start:end]  will return a new 
list with the elements from start 
index through end-1.

▸ list[start:]  will return a new list 
with the elements from start to the 
end of the list.

▸ list[:end] will return a new list with 
the elements from 0 through end-1.

▸ list[:] will return a copy of the 
entire list.



LISTS

Looping over lists

9

▸ We can use the for 
loop to iterate over 
each item in the list. 


▸ This is often called a 
"foreach" loop, i.e. 
for each item in the 
list, do an iteration 
of the loop.



LISTS

Practice time

10

▸ Write a function called sum that returns the sum of all the 
values in a list of numbers.



LISTS

Calculating the average of a list - the inelegant way

11



LISTS

Calculating the average of a list - the elegant way

12



LISTS

Built-in functions over lists

13

▸ Length of list


▸ len(list)

▸ Max of list


▸ max(list)

▸ Min of list


▸ min(list)

▸ Sum of list


▸ sum(list)



LISTS

List methods

14

▸ Lists are objects therefore have methods.


▸ Object: a software bundle that consists of properties and 
behavior. Behavior is controlled by methods.


▸ We call a method of an object using the dot operator.


▸ Syntax: myList.someMethod(argument)

▸ https://docs.python.org/3/tutorial/datastructures.html


▸ Or help([])


▸ Or help(list)

https://docs.python.org/3/tutorial/datastructures.html


LISTS

append

15

▸ Adds a value at the end of a list.


▸ Notice that append does not return a new list, it just 
modifies the existing list!



LISTS

pop

16

▸ Removes a value from the end of a list and returns it.


▸ Notice that pop both modifies the list and returns the last value. 
If you want to use this value, you need to store it.


▸ pop also has another version where you can specify the index.



LISTS

insert

17

▸ Inserts a value at a specific index.


▸ Notice that insert does not return a new list but modifies the 
underlying one.



LISTS

sort

18

▸ Sorts a list in ascending order.


▸ Again, sort does not return a new list but modifies the underlying 
one.



LISTS

scores-list.py

19

▸ There is a function called get_scores. It gets the scores and returns them as a list.


▸ starts with an empty list,


▸ uses append to add them on to the end of the list,


▸ returns the list when the loop finishes.


▸ median function


▸ sorts the values


▸ notice again that sort does NOT return a value, but sorts the list that it is 
called on.


▸ returns the middle entry

https://cs.pomona.edu/classes/cs51a/examples/scores-list.txt


LISTS

Lists are mutable

20

▸ We can change (or mutate) the values in a list.


▸ Notice that many of the methods that we call on lists 
change the list itself.


▸ We can mutate lists with methods, but we can also change 
particular indices.



TODAY’S LECTURE IN A NUTSHELL

Lecture 6: Sequences

▸ Lists


▸ Sequences


▸ Tuples

21



SEQUENCES

Sequences

22

▸ Lists are part of a general category of data structures called sequences.


▸ Sequences represent a… sequence of things.


▸ All sequences support a number of shared behavior.


▸ The ability to index using [].


▸ The ability to slice using [:].


▸ A number of built-in functions:


▸ len, max, min.


▸ The ability to iterate over them with a for loop.


▸ We've actually seen one other sequence. Strings!



SEQUENCES

Strings as sequences

23

▸ We can do all sorts of 
sequence-like things 
to strings!


▸ Strings, however, are 
immutable! We 
cannot mutate them.



SEQUENCES

more-lists.py

24

▸ What does the list-to-string function do?


▸ Creates a list from a string:


▸ Takes as input a list. A list of almost any type, as long as we can call 
str() on.


▸ Concatenates all the items in the list into a single string.


▸ result starts out as the empty string.


▸ It iterates through each item in the list and concatenates them on to the 
result


▸ Returns the entire result list minus the last element (which is “ “)

https://cs.pomona.edu/classes/cs51a/examples/more-lists.txt


SEQUENCES

Alternate way of iterating over lists

25



SEQUENCES

Practice time

26

▸ Write a function called multiply_lists that takes two 
lists of numbers and creates a new list with the values 
pairwise multiplied. E.g., 



TODAY’S LECTURE IN A NUTSHELL

Lecture 6: Sequences

▸ Lists


▸ Sequences


▸ Tuples

27



TUPLES

Tuples

28

▸ Tuple: an immutable list. Type of sequence.


▸ Tuples can be created using parentheses (instead of []).


▸ Notice that when they print out, they also show using 
parentheses. 



TUPLES

Tuples as immutable sequences

29



TUPLES

Unpacking tuples

30

▸ If we know how many items are in a tuple, we can 
"unpack" it into individual variables.



TUPLES

movies.py

31

▸ Tuples are useful for representing data with fixed entries.


▸ Look at the print_movies function movies.py.


▸ It iterates over the list, just like any other list.


▸ movie_pair is a tuple (each entry in the list is a tuple). We unpack the tuple to get at the two 
values in the tuple.


▸ We also could have written movie_pair[0] and movie_pair[1] (see print_movies2), 
though unpacking is much cleaner.


▸ Once we have the two values, we can print them out


▸ \t is a special character that represents a tab (like \n, which represents the end of line 
character)


▸ Look at the print_movies3 function.


▸ We can unpack the two values of the tuple *in* the for loop. Any of the variants is fine for this class!

https://cs.pomona.edu/classes/cs51a/examples/movies.txt
https://cs.pomona.edu/classes/cs51a/examples/movies.txt


TUPLES

get_movie_score function

32

▸ What does the get_movie_score function do?


▸ Takes two parameters, a movie database and a movie 
title.


▸ It iterates through the movie database and tries to find 
the matching title.


▸ If it finds it, it returns the score.


▸ If it doesn't find it, it will iterate through all of the movie 
entries, finish the for loop and return -1.0



TUPLES

Practice time

33

▸ Write a function called my_max that takes a list of positive numbers and returns the largest 
one.


▸ Key idea: have a variable that keeps track of the largest number seen so far. At each 
iteration, compare the current number to max, if it's bigger, update the max value. 


▸ Why initialize it to -1? We need to initialize it to something that is smaller than any of the 
values. We could also have done something like max = numbers[0] (assuming that the 
input would have at least one value).



TUPLES

get_highest_rated_movie function

34

▸ What does the get_highest_rated_movie function do?


▸ Very similar idea to my_max function.


▸ We’re finding the largest score. 


▸ We also keep track of the movie with the highest 
score so that we can return that at the end.



TUPLES

Practice time

35

▸ Write a function called get_movies_above_threshold that 
takes as input a movie database and a critic score threshold and 
returns all of the movies above that threshold.



ASSIGNED READINGS AND PRACTICE PROBLEMS

Resources

▸ Textbook: Chapters 9 and 10 


▸ scores-list.py

▸ more-lists.py

▸ movies.py

36

Homework
▸ Assignment 3

Practice Problems
▸ Practice 4 (solution)

https://runestone.academy/ns/books/published/thinkcspy/Strings/toctree.html
https://runestone.academy/ns/books/published/thinkcspy/Lists/toctree.html
https://cs.pomona.edu/classes/cs51a/examples/scores-list.txt
https://cs.pomona.edu/classes/cs51a/examples/more-lists.txt
https://cs.pomona.edu/classes/cs51a/examples/movies.txt
https://cs.pomona.edu/classes/cs51a/problems/practice4.txt
https://cs.pomona.edu/classes/cs51a/problems/practice4-solution.txt

