
CS051A
INTRO TO COMPUTER SCIENCE WITH TOPICS IN AI

6: Sequences

Alexandra Papoutsaki

she/her/hers

Lectures

02-07-2022

David Kauchak

he/him/his

Lectures

Zilong Ye

he/him/his

Labs

TODAY’S LECTURE IN A NUTSHELL

Lecture 6: Sequences

▸ Lists

▸ Sequences

▸ Tuples

2

LISTS

scores-list.py

3

▸ A program that contains a set of functions for reading in
scores and calculating various statistics on them.

https://cs.pomona.edu/classes/cs51a/examples/scores-lists.txt

LISTS

scores-list.py - What does it do?

4

▸ First, it prompts the user to enter a list of scores one at a time

▸ Uses a while loop that keeps asking the user for a new score. What is the exit condition?

▸ Checks to see if the line is empty: while line != ""

▸ Then, calculate various statistics based on what was entered. How are we calculating these statistics?

▸ Average?

▸ We could keep track of the sum and the total number of scores entered and divide them at the end.

▸ Max (min)?

▸ Keep track of the largest (smallest) score seen so far. Each time a new one is entered, see if it's larger (smaller). If so, update the
largest (smallest).

▸ Median?

▸ The challenge with median is that we can't calculate it until we have all of the scores. We need to sort them and then find the
middle score.

▸ Why can't we do this using int/float variables?

▸ We don't know how many scores are going to be entered. Even if we did, if we had 100 students in the class, we'd need 100
variables!

https://cs.pomona.edu/classes/cs51a/examples/scores-list.txt

LISTS

Lists

5

▸ List: a data structure.

▸ Data structure: a way of storing and
organizing data.

▸ Lists allow us to store multiple values
using only a single variable to refer to
them!

▸ Creating lists: provide elements
separated by comma and enclosed in
square brackets.

▸ Lists are a type and represent a value, just
like float, int, bool and str. We can
assign them to variables, print them, etc.

LISTS

Accessing Lists

6

▸ []: creates an empty list.

▸ We can access a particular value in the
list by using the [] to "index" into the
list.

▸ Indexing starts at 0!

▸ Be careful of index out of range errors!

▸ We can only index from 0…
length-1.

▸ Negative indexing counts back from
the end of the list.

LISTS

Storing other things in lists

7

▸ A list is a contiguous set
of spaces in memory.

▸ [_ , _ , _ , _]

▸ We can store anything
in each of these spaces.

▸ In general, it's a good
idea to have lists be
homogeneous, i.e. be of
the same type.

LISTS

Slicing

8

▸ Sometimes, we want more than just one
item from the list (this is called slicing).

▸ We can specify a range in the square
brackets, [], using the colon (:)

▸ list[start:end] will return a new
list with the elements from start
index through end-1.

▸ list[start:] will return a new list
with the elements from start to the
end of the list.

▸ list[:end] will return a new list with
the elements from 0 through end-1.

▸ list[:] will return a copy of the
entire list.

LISTS

Looping over lists

9

▸ We can use the for
loop to iterate over
each item in the list.

▸ This is often called a
"foreach" loop, i.e.
for each item in the
list, do an iteration
of the loop.

LISTS

Practice time

10

▸ Write a function called sum that returns the sum of all the
values in a list of numbers.

LISTS

Calculating the average of a list - the inelegant way

11

LISTS

Calculating the average of a list - the elegant way

12

LISTS

Built-in functions over lists

13

▸ Length of list

▸ len(list)

▸ Max of list

▸ max(list)

▸ Min of list

▸ min(list)

▸ Sum of list

▸ sum(list)

LISTS

List methods

14

▸ Lists are objects therefore have methods.

▸ Object: a software bundle that consists of properties and
behavior. Behavior is controlled by methods.

▸ We call a method of an object using the dot operator.

▸ Syntax: myList.someMethod(argument)

▸ https://docs.python.org/3/tutorial/datastructures.html

▸ Or help([])

▸ Or help(list)

https://docs.python.org/3/tutorial/datastructures.html

LISTS

append

15

▸ Adds a value at the end of a list.

▸ Notice that append does not return a new list, it just
modifies the existing list!

LISTS

pop

16

▸ Removes a value from the end of a list and returns it.

▸ Notice that pop both modifies the list and returns the last value.
If you want to use this value, you need to store it.

▸ pop also has another version where you can specify the index.

LISTS

insert

17

▸ Inserts a value at a specific index.

▸ Notice that insert does not return a new list but modifies the
underlying one.

LISTS

sort

18

▸ Sorts a list in ascending order.

▸ Again, sort does not return a new list but modifies the underlying
one.

LISTS

scores-list.py

19

▸ There is a function called get_scores. It gets the scores and returns them as a list.

▸ starts with an empty list,

▸ uses append to add them on to the end of the list,

▸ returns the list when the loop finishes.

▸ median function

▸ sorts the values

▸ notice again that sort does NOT return a value, but sorts the list that it is
called on.

▸ returns the middle entry

https://cs.pomona.edu/classes/cs51a/examples/scores-list.txt

LISTS

Lists are mutable

20

▸ We can change (or mutate) the values in a list.

▸ Notice that many of the methods that we call on lists
change the list itself.

▸ We can mutate lists with methods, but we can also change
particular indices.

TODAY’S LECTURE IN A NUTSHELL

Lecture 6: Sequences

▸ Lists

▸ Sequences

▸ Tuples

21

SEQUENCES

Sequences

22

▸ Lists are part of a general category of data structures called sequences.

▸ Sequences represent a… sequence of things.

▸ All sequences support a number of shared behavior.

▸ The ability to index using [].

▸ The ability to slice using [:].

▸ A number of built-in functions:

▸ len, max, min.

▸ The ability to iterate over them with a for loop.

▸ We've actually seen one other sequence. Strings!

SEQUENCES

Strings as sequences

23

▸ We can do all sorts of
sequence-like things
to strings!

▸ Strings, however, are
immutable! We
cannot mutate them.

SEQUENCES

more-lists.py

24

▸ What does the list-to-string function do?

▸ Creates a list from a string:

▸ Takes as input a list. A list of almost any type, as long as we can call
str() on.

▸ Concatenates all the items in the list into a single string.

▸ result starts out as the empty string.

▸ It iterates through each item in the list and concatenates them on to the
result

▸ Returns the entire result list minus the last element (which is “ “)

https://cs.pomona.edu/classes/cs51a/examples/more-lists.txt

SEQUENCES

Alternate way of iterating over lists

25

SEQUENCES

Practice time

26

▸ Write a function called multiply_lists that takes two
lists of numbers and creates a new list with the values
pairwise multiplied. E.g.,

TODAY’S LECTURE IN A NUTSHELL

Lecture 6: Sequences

▸ Lists

▸ Sequences

▸ Tuples

27

TUPLES

Tuples

28

▸ Tuple: an immutable list. Type of sequence.

▸ Tuples can be created using parentheses (instead of []).

▸ Notice that when they print out, they also show using
parentheses.

TUPLES

Tuples as immutable sequences

29

TUPLES

Unpacking tuples

30

▸ If we know how many items are in a tuple, we can
"unpack" it into individual variables.

TUPLES

movies.py

31

▸ Tuples are useful for representing data with fixed entries.

▸ Look at the print_movies function movies.py.

▸ It iterates over the list, just like any other list.

▸ movie_pair is a tuple (each entry in the list is a tuple). We unpack the tuple to get at the two
values in the tuple.

▸ We also could have written movie_pair[0] and movie_pair[1] (see print_movies2),
though unpacking is much cleaner.

▸ Once we have the two values, we can print them out

▸ \t is a special character that represents a tab (like \n, which represents the end of line
character)

▸ Look at the print_movies3 function.

▸ We can unpack the two values of the tuple *in* the for loop. Any of the variants is fine for this class!

https://cs.pomona.edu/classes/cs51a/examples/movies.txt
https://cs.pomona.edu/classes/cs51a/examples/movies.txt

TUPLES

get_movie_score function

32

▸ What does the get_movie_score function do?

▸ Takes two parameters, a movie database and a movie
title.

▸ It iterates through the movie database and tries to find
the matching title.

▸ If it finds it, it returns the score.

▸ If it doesn't find it, it will iterate through all of the movie
entries, finish the for loop and return -1.0

TUPLES

Practice time

33

▸ Write a function called my_max that takes a list of positive numbers and returns the largest
one.

▸ Key idea: have a variable that keeps track of the largest number seen so far. At each
iteration, compare the current number to max, if it's bigger, update the max value.

▸ Why initialize it to -1? We need to initialize it to something that is smaller than any of the
values. We could also have done something like max = numbers[0] (assuming that the
input would have at least one value).

TUPLES

get_highest_rated_movie function

34

▸ What does the get_highest_rated_movie function do?

▸ Very similar idea to my_max function.

▸ We’re finding the largest score.

▸ We also keep track of the movie with the highest
score so that we can return that at the end.

TUPLES

Practice time

35

▸ Write a function called get_movies_above_threshold that
takes as input a movie database and a critic score threshold and
returns all of the movies above that threshold.

ASSIGNED READINGS AND PRACTICE PROBLEMS

Resources

▸ Textbook: Chapters 9 and 10

▸ scores-list.py

▸ more-lists.py

▸ movies.py

36

Homework
▸ Assignment 3

Practice Problems
▸ Practice 4 (solution)

https://runestone.academy/ns/books/published/thinkcspy/Strings/toctree.html
https://runestone.academy/ns/books/published/thinkcspy/Lists/toctree.html
https://cs.pomona.edu/classes/cs51a/examples/scores-list.txt
https://cs.pomona.edu/classes/cs51a/examples/more-lists.txt
https://cs.pomona.edu/classes/cs51a/examples/movies.txt
https://cs.pomona.edu/classes/cs51a/problems/practice4.txt
https://cs.pomona.edu/classes/cs51a/problems/practice4-solution.txt

