
CS051A

INTRO TO COMPUTER SCIENCE WITH TOPICS IN AI

6: Sequences

Alexandra Papoutsaki

she/her/hers

Lectures

02-07-2022

David Kauchak

he/him/his

Lectures

Zilong Ye

he/him/his

Labs

[record lecture on Zoom]

Welcome to lecture 6! I hope you had a good time last week with Dr. Dave! We will stay together until the spring break and your ethics presentation (more details to
come). Are there any questions? Don’t forget you have lab today or tomorrow and assignment 3 is out and due as always this coming Sunday.

TODAY’S LECTURE IN A NUTSHELL

Lecture 6: Sequences

▸ Lists

▸ Sequences

▸ Tuples

2

Over last week, we started learning how to make our code more intelligent with boolean (bool) expressions, if statements, and for and while loops. Today, we will
continue with learning how our programs can store and process significantly more data than we have seen so far.

LISTS

scores-list.py

3

▸ A program that contains a set of functions for reading in
scores and calculating various statistics on them.

Let’s start by looking at what happens when we run scores-list.py, a program that contains a set of functions for reading in scores and calculating various statistics on
them.

https://cs.pomona.edu/classes/cs51a/examples/scores-lists.txt

LISTS

scores-list.py - What does it do?

4

▸ First, it prompts the user to enter a list of scores one at a time

▸ Uses a while loop that keeps asking the user for a new score. What is the exit condition?

▸ Checks to see if the line is empty: while line != ""

▸ Then, calculate various statistics based on what was entered. How are we calculating these statistics?

▸ Average?

▸ We could keep track of the sum and the total number of scores entered and divide them at the end.

▸ Max (min)?

▸ Keep track of the largest (smallest) score seen so far. Each time a new one is entered, see if it's larger (smaller). If so, update the
largest (smallest).

▸ Median?

▸ The challenge with median is that we can't calculate it until we have all of the scores. We need to sort them and then find the
middle score.

▸ Why can't we do this using int/float variables?

▸ We don't know how many scores are going to be entered. Even if we did, if we had 100 students in the class, we'd need 100
variables!

What does scores-list.py do exactly? First, it looks like it prompts the user to enter a list of scores one at a time. When we want to stop providing scores, we just don’t
provide anything and hit Enter. This is achieved using a while loop where the exit condition is to examine whether the provided line is empty.

The program then proceeds with calculating various statistics based on what was entered. How would we go by calculating the average? We could keep track of the sum
and the total number of scores entered and divide them at the end. What about finding the max or min score? We can keep track of the largest (smallest) score seen so
far. If we encounter a larger (smaller) one, then we know that this is the new largest (smallest). The median is the middle number in a sorted list. The challenge here is that
we can’t calculate it until we have all the scores. We would need to sort them and then find the middle one.

You might be thinking, why can’t do all this using variables of type int or float? First, we don’t know in advance how many scores the user will enter. And even if we did,
our program would be hard to scale. For example, if we had 100 students, we would need 100 variables! Luckily, Python has a good solution for us called lists.

https://cs.pomona.edu/classes/cs51a/examples/scores-list.txt

LISTS

Lists

5

▸ List: a data structure.

▸ Data structure: a way of storing and
organizing data.

▸ Lists allow us to store multiple values
using only a single variable to refer to
them!

▸ Creating lists: provide elements
separated by comma and enclosed in
square brackets.

▸ Lists are a type and represent a value, just
like float, int, bool and str. We can
assign them to variables, print them, etc.

So what are lists? A list is a data structure, that is a tool that most programming languages have and which allows us to store and organize data. Even cooler? We only
need a single variable to refer to the multiple values that a list stores. The syntax for creating lists is providing the elements separated by comma and enclosed in square
brackets. Lists are a type and represent a value, just like float, int, bool and str. We can assign them to variables, print them, etc.

LISTS

Accessing Lists

6

▸ []: creates an empty list.

▸ We can access a particular value in the
list by using the [] to "index" into the
list.

▸ Indexing starts at 0!

▸ Be careful of index out of range errors!

▸ We can only index from 0…
length-1.

▸ Negative indexing counts back from
the end of the list.

If we want to create an empty list, we use empty square brackets. To access a particular value in a list, we can use the square brackets to index into the list, that is ask
for the first, second, third, etc, element. As always, in CS we start counting at 0 so indexing starts at 0. Be careful when indexing lists as you can only ask for the
elements between 0… length-1. If you go >= length, you will get an index out of range error. Well, to be precise, indexing can be negative, too! When you provide a
negative index, then you get the values from the end of the list reversely. Notice that the type of my_list[3] is an int, not a list!

LISTS

Storing other things in lists

7

▸ A list is a contiguous set
of spaces in memory.

▸ [_ , _ , _ , _]

▸ We can store anything
in each of these spaces.

▸ In general, it's a good
idea to have lists be
homogeneous, i.e. be of
the same type.

A list is a contiguous set of spaces in memory. If we were to draw its representation, it would looks like [_,_,_,_]. We can store anything in each of these spaces, even mix
and match different types! In general, it’s a good idea to have lists be homogeneous, i.e., be of the same type. Many programming languages, unlike Python, won’t let
you mix and match different types.

LISTS

Slicing

8

▸ Sometimes, we want more than just one
item from the list (this is called slicing).

▸ We can specify a range in the square
brackets, [], using the colon (:)

▸ list[start:end] will return a new
list with the elements from start
index through end-1.

▸ list[start:] will return a new list
with the elements from start to the
end of the list.

▸ list[:end] will return a new list with
the elements from 0 through end-1.

▸ list[:] will return a copy of the
entire list.

Sometimes we want a “slice” off a list, that is a contiguous subset of the elements that it contains. We can specify the range of the slicing using the colon notation.

list[start:end] will return a new list with the elements from start index through end-1.

list[start:] will return a new list with the elements from start to the end of the list.

list[:end] will return a new list with the elements from 0 through end-1.

list[:] will return a copy of the entire list.

Look at the following examples:

list_of_numbers = [32, 4, -1, 15, -20]

list_of_numbers[0:3]

[32, 4, -1]

list_of_numbers[1:4]

[4, -1, 15]

list_of_numbers[1:]

[4, -1, 15, -20]

list_of_numbers[:2]

[32, 4]

list_of_numbers[:]

[32, 4, -1, 15, -20]

list_of_numbers[1:1]

[]

list_of_numbers[-3:-1]

[-1, 15]

LISTS

Looping over lists

9

▸ We can use the for
loop to iterate over
each item in the list.

▸ This is often called a
"foreach" loop, i.e.
for each item in the
list, do an iteration
of the loop.

To iterate over each item in a list, we can use a for loop with the syntax

for element in list:

	 statement

This is often called a "foreach" loop, i.e. for each item in the list, do an iteration of the loop.

LISTS

Practice time

10

▸ Write a function called sum that returns the sum of all the
values in a list of numbers.

Let’s practice by writing a function called sum that returns the sum of all the values in a list of numbers.

Using a foreach loop, we can try something like:

 def sum(numbers):

 total = 0

 for val in numbers:

 total += val

 return total

LISTS

Calculating the average of a list - the inelegant way

11

If we wanted to calculate the average of the values in a list using what we just learned, we would probably come up with a function that looks like:

def inelegant_average(scores):

 """

 Calculates the average of the values in list scores in an inelegant way

 :param scores: (list) a list of numbers that correspond to scores

 :return: (float) the average of the values in scores

 """

 sum = 0.0

 count = 0

 for score in scores:

 sum += score

 count += 1

 return sum / count

Although this is definitely correct, it is not the most elegant way of going about it.

LISTS

Calculating the average of a list - the elegant way

12

A much more elegant way would be to use the built-in Python sum and len functions which would simplify our code to:

def average(scores):

 """

 Calculates the average of the values in list scores in an elegant way

 :param scores: (list) a list of numbers that correspond to scores

 :return: (float) the average of the values in scores

 """

 return sum(scores) / len(scores)

LISTS

Built-in functions over lists

13

▸ Length of list

▸ len(list)

▸ Max of list

▸ max(list)

▸ Min of list

▸ min(list)

▸ Sum of list

▸ sum(list)

In general, there are a number of built-in functions that allow us to get information about a list. E.g., len returns the number of elements in a list, max the maximum
element, min the minimum, and sum sums them up.

LISTS

List methods

14

▸ Lists are objects therefore have methods.

▸ Object: a software bundle that consists of properties and
behavior. Behavior is controlled by methods.

▸ We call a method of an object using the dot operator.

▸ Syntax: myList.someMethod(argument)

▸ https://docs.python.org/3/tutorial/datastructures.html

▸ Or help([])

▸ Or help(list)

Lists are objects and therefore have methods. What is an object you may ask? Objects are a central concept in the object-oriented programming paradigm. They
represent a software bundle that consists of properties and behavior. The behavior is controlled by methods which are similar to functions but operate on the properties
of a specific object. We will talk about objects later in the class but in general, to call a method of an object we will use the dot operator. For example, if we had a list
called myList, the Python syntax for calling one of its methods, let’s say someMethod, would be myList.someMethod(argument). You can read more about the
methods that list has by visiting the official python tutorial or using help.

https://docs.python.org/3/tutorial/datastructures.html

LISTS

append

15

▸ Adds a value at the end of a list.

▸ Notice that append does not return a new list, it just
modifies the existing list!

Let’s see some basic list methods. The first one is called append and it adds or appends a value at the of a list. Notice that append does not return a new list, it just
modifies the existing list.

LISTS

pop

16

▸ Removes a value from the end of a list and returns it.

▸ Notice that pop both modifies the list and returns the last value.
If you want to use this value, you need to store it.

▸ pop also has another version where you can specify the index.

If you want to remove and return a value from the end of a list, you would use the pop method. Notice that pop both modifies the list and returns the last value. If you
want to use this value, you need to store it in some variable, otherwise it will be lost! There is another version of pop that takes a parameter which corresponds to the
index of the element you want to remove and return.

LISTS

insert

17

▸ Inserts a value at a specific index.

▸ Notice that insert does not return a new list but modifies the
underlying one.

If you want to insert a value at a specific index, not just append it at the end of the list, you would use the method insert. As with append, notice that insert does not
return a new list but modifies the underlying one.

LISTS

sort

18

▸ Sorts a list in ascending order.

▸ Again, sort does not return a new list but modifies the underlying
one.

Finally, there is another handy method called sort which sorts a list in ascending order, i.e. 1, 2, 3 if you have numbers, a, b, c if you have strings etc. Again, sort does
not return a new list but modifies the underlying one.

LISTS

scores-list.py

19

▸ There is a function called get_scores. It gets the scores and returns them as a list.

▸ starts with an empty list,

▸ uses append to add them on to the end of the list,

▸ returns the list when the loop finishes.

▸ median function

▸ sorts the values

▸ notice again that sort does NOT return a value, but sorts the list that it is
called on.

▸ returns the middle entry

Let’s look in more depth at the scores-list.py file and specifically at the functions get_scores and median. get_scores asks the user for one score at a time and
returns them in a list. How does it accomplish it? It starts with an empty list, uses append to add them to the end of the list, and returns the list when the loop finishes
(no new score is provided).

The median function works by sorting the value, finding the middle entry based on whether you have an odd or even number of elements, and returns the middle entry.
Notice again that sort does not return a value but sorts the list that is called on. This is a recurring theme with the list methods we have seen.

https://cs.pomona.edu/classes/cs51a/examples/scores-list.txt

LISTS

Lists are mutable

20

▸ We can change (or mutate) the values in a list.

▸ Notice that many of the methods that we call on lists
change the list itself.

▸ We can mutate lists with methods, but we can also change
particular indices.

This is because lists are mutable. This means that we can change (or mutate) the values in a list. The methods we have called on lists change the list itself. We can also
change particular indices of the list.

TODAY’S LECTURE IN A NUTSHELL

Lecture 6: Sequences

▸ Lists

▸ Sequences

▸ Tuples

21

Which brings us to a new and more general category of data structures called sequences.

SEQUENCES

Sequences

22

▸ Lists are part of a general category of data structures called sequences.

▸ Sequences represent a… sequence of things.

▸ All sequences support a number of shared behavior.

▸ The ability to index using [].

▸ The ability to slice using [:].

▸ A number of built-in functions:

▸ len, max, min.

▸ The ability to iterate over them with a for loop.

▸ We've actually seen one other sequence. Strings!

Lists are part of a general category of data structures called sequences which as their name says represent a sequence of things. All types of sequences support a
number of shared behavior: indexing, slicing, built-in functions, such as len, max, and min, and the ability to iterate over them with a foreach loop. We've actually seen
one other sequence beyond lists already. Strings!

SEQUENCES

Strings as sequences

23

▸ We can do all sorts of
sequence-like things
to strings!

▸ Strings, however, are
immutable! We
cannot mutate them.

Since strings are sequences, we can do all sorts of sequence-like things to them including indexing, slicing, and using built-in functions. In contrast to lists though,
strings are immutable. If you try to alter a string, you will get an error!

SEQUENCES

more-lists.py

24

▸ What does the list-to-string function do?

▸ Creates a list from a string:

▸ Takes as input a list. A list of almost any type, as long as we can call
str() on.

▸ Concatenates all the items in the list into a single string.

▸ result starts out as the empty string.

▸ It iterates through each item in the list and concatenates them on to the
result

▸ Returns the entire result list minus the last element (which is “ “)

Let’s look at the more-lists.py file. What do you think that the lists-to-string function do? Aptly named, it creates a list from a string. It takes as input a list which can hold
almost anything as long as we can call the str() function. It then concatenates all. The items in the list into a single string result which starts empty. As we iterate through
each item in the list, we concatenate it to the result (separated by “ “). At the end, we return the entire result minus the last element which is a “ “.

https://cs.pomona.edu/classes/cs51a/examples/more-lists.txt

SEQUENCES

Alternate way of iterating over lists

25

We have already seen that you can use a foreach loop to iterate through each of the elements of a list. Alternatively, we can use a traditional for loop and index through
each of the list elements.

SEQUENCES

Practice time

26

▸ Write a function called multiply_lists that takes two
lists of numbers and creates a new list with the values
pairwise multiplied. E.g.,

Let’s practice by writing a function called multiply_lists that takes two lists of numbers and creates a new list with the values pairwise multiplied. E.g.,

list1 = [1, 2, 1, 2]

list2 = [1, 2, 3, 4]

multiply_lists(list1, list2)

[1, 4, 3, 8]

You should end up with something similar to:

def multiply_lists(list1, list2):

 """

 Creates a new list that is the result of the multiplication of two equally-lengthed lists of numbers

 :param list1: (list) the first list of numbers

 :param list2: (list) the second list of numbers

 :return: (list) a list where each index corresponds to the multiplication of the numbers existing in the same index

 in list1 and list2

 """

 result = []

 if len(list1) != len(list2):

 print("Error: lists are not of equal length!")

 else:

 for i in range(len(list1)):

 result.append(list1[i] * list2[i])

 return result

TODAY’S LECTURE IN A NUTSHELL

Lecture 6: Sequences

▸ Lists

▸ Sequences

▸ Tuples

27

So far, we have seen two types of sequences: lists and strings. There is a third category called tuples.

TUPLES

Tuples

28

▸ Tuple: an immutable list. Type of sequence.

▸ Tuples can be created using parentheses (instead of []).

▸ Notice that when they print out, they also show using
parentheses.

For a variety of reasons (we'll get into some eventually), we also have immutable lists, called tuples. Tuples can be created using parenthesis (instead of square braces).
Here’s an example:

my_tuple = (1, 2, 3, 4)

my_tuple

(1, 2, 3, 4)

another_tuple = ("a", "b", "c", "d")

another_tuple

('a', 'b', 'c', ‘d')

Notice that when they print out, they also show using parentheses.

TUPLES

Tuples as immutable sequences

29

Since tuples are sequences, we can use the standard way of indexing them, slicing them, iterating through them. But tuples are immutable sequences so we can’t
change them, call methods such as append, etc.

TUPLES

Unpacking tuples

30

▸ If we know how many items are in a tuple, we can
"unpack" it into individual variables.

If we know how many items are in a tuple, we can "unpack" it into individual variables. E.g.,

my_tuple = (1, 2, 3)

my_tuple

(1, 2, 3)

(x, y, z) = my_tuple

x

1

y

2

z

3

Notice that you can do the same thing using the following syntax which doesn’t even include parentheses:

(x, y, z) = (10, 11, 12)

x

10

y

11

z

12

x, y, z = "apple", "banana", "pineapple"

x

'apple'

y

'banana'

z

‘pineapple'

TUPLES

movies.py

31

▸ Tuples are useful for representing data with fixed entries.

▸ Look at the print_movies function movies.py.

▸ It iterates over the list, just like any other list.

▸ movie_pair is a tuple (each entry in the list is a tuple). We unpack the tuple to get at the two
values in the tuple.

▸ We also could have written movie_pair[0] and movie_pair[1] (see print_movies2),
though unpacking is much cleaner.

▸ Once we have the two values, we can print them out

▸ \t is a special character that represents a tab (like \n, which represents the end of line
character)

▸ Look at the print_movies3 function.

▸ We can unpack the two values of the tuple *in* the for loop. Any of the variants is fine for this class!

Tuples are useful for representing data with fixed entries. Look at the print_movies function movies.py a file that works on a database of movies and their corresponding
critic scores.

The function iterates over the list, just like any other list.

movie_pair is a tuple (each entry in the list is a tuple). We unpack the tuple to get at the two values in the tuple. We also could have written movie_pair[0] and
movie_pair[1] (see print_movies2), though unpacking is much cleaner. Once we have the two values, we can print them out. Please note that

\t is a special character that represents a tab (like \n, which represents the end of line character)

Now, look at the print_movies3 function. We can unpack the two values of the tuple *in* the for loop. Any of the variants is fine for this class!

https://cs.pomona.edu/classes/cs51a/examples/movies.txt
https://cs.pomona.edu/classes/cs51a/examples/movies.txt

TUPLES

get_movie_score function

32

▸ What does the get_movie_score function do?

▸ Takes two parameters, a movie database and a movie
title.

▸ It iterates through the movie database and tries to find
the matching title.

▸ If it finds it, it returns the score.

▸ If it doesn't find it, it will iterate through all of the movie
entries, finish the for loop and return -1.0

Now let’s look into the get_movie_score function? What do you think this function does? It takes two parameters, a movie database and a movie title. It iterates through
the movie database and seeks the title. If it finds it, it returns the critic score. If it has gone through the entire database and it’s not there, it returns -1.0.

TUPLES

Practice time

33

▸ Write a function called my_max that takes a list of positive numbers and returns the largest
one.

▸ Key idea: have a variable that keeps track of the largest number seen so far. At each
iteration, compare the current number to max, if it's bigger, update the max value.

▸ Why initialize it to -1? We need to initialize it to something that is smaller than any of the
values. We could also have done something like max = numbers[0] (assuming that the
input would have at least one value).

Let’s practice by writing a function called my_max that takes a list of positive numbers and returns the largest one. A key idea we will use is to have a variable that keeps
track of the largest number seen so far. At each iteration, we compare the current number to max. If it's bigger, update the max value.

Why initialize it to -1? We need to initialize it to something that is smaller than any of the values. We could also have done something like max = numbers[0] (assuming
that the input would have at least one value).

TUPLES

get_highest_rated_movie function

34

▸ What does the get_highest_rated_movie function do?

▸ Very similar idea to my_max function.

▸ We’re finding the largest score.

▸ We also keep track of the movie with the highest
score so that we can return that at the end.

Now let’s look into the get_highest_rated_movie function? What do you think this function does? It takes one parameters, a movie database, and it acts similarly to
my_max function by searching for the largest element (in this case critic score). We also keep track of the movie with the highest score so that we can return that at the
end.

TUPLES

Practice time

35

▸ Write a function called get_movies_above_threshold that
takes as input a movie database and a critic score threshold and
returns all of the movies above that threshold.

For the final practice for today’s lecture, let’s write a function called get_movies_above_threshold that takes as input a movie database and a critic score threshold and
returns all of the movies above that threshold. Hint: it should look a lot like some of the other examples that we've seen that build up a list of answers (e.g. string_to_list in
more-lists.py code). Look at get_movies_above_threshold function in movies.py code. We start out with an empty list, iterate through the movie database, check each
movie score; if the score is greater than or equal to the threshold, append it to the end of our list of movies that are above the threshold. Once we go through the entire
database, we return the list of movies above the threshold.

ASSIGNED READINGS AND PRACTICE PROBLEMS

Resources

▸ Textbook: Chapters 9 and 10

▸ scores-list.py

▸ more-lists.py

▸ movies.py

36

Homework
▸ Assignment 3

Practice Problems
▸ Practice 4 (solution)

https://runestone.academy/ns/books/published/thinkcspy/Strings/toctree.html
https://runestone.academy/ns/books/published/thinkcspy/Lists/toctree.html
https://cs.pomona.edu/classes/cs51a/examples/scores-list.txt
https://cs.pomona.edu/classes/cs51a/examples/more-lists.txt
https://cs.pomona.edu/classes/cs51a/examples/movies.txt
https://cs.pomona.edu/classes/cs51a/problems/practice4.txt
https://cs.pomona.edu/classes/cs51a/problems/practice4-solution.txt

