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ADMINISTRATIVE

This week
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▸ All course handouts can be found on the course website 

▸ https://cs.pomona.edu/classes/cs51a/  

▸ First assignment due this coming Sunday. 

▸ If you have any questions, join our office hours and mentor 
sessions. 

▸ Schedule is posted on website.  

▸ Mentor sessions Zoom links on Slack.

https://cs.pomona.edu/classes/cs51a/
https://cs.pomona.edu/classes/cs51a/assignments/assign1.pdf
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PRINT FUNCTION

print function
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▸ Use it when you want to “print” (i.e. display on the screen) 
certain expressions (e.g., numbers, strings, contents of 
variables, messages, etc.). 

▸ Extremely useful for figuring out how our code works.



PRINT FUNCTION

Using the print function to understand our code
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▸ If you wanted to figure out why it was that high, you could 
temporarily add some print statements in the code.



PRINT FUNCTION

Don’t forget to remove unnecessary print statements
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▸ We can dig further if we'd like by adding more print statements. 

▸ E.g., 

▸ When you're done, don’t forget to  
REMOVE ALL PRINT STATEMENTS! 

▸ In most cases, we're adding print statements to help us debug 
our program. 

▸ debugging: the process of finding and removing 
programming errors.



PRINT FUNCTION

print vs return

8

▸ print

▸ the print function displays the value to the screen/shell. 

▸ return

▸ a return statement has two parts, return [expression]

▸ When the program gets to this line, it evaluates the expression. 

▸ Whatever value this expression evaluates to then is "returned" 
from that function and represents the value at where the 
function was called.



PRINT FUNCTION

print_vs_return.py
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▸ Similar calculations but VERY different behavior.



PRINT FUNCTION

print_vs_return.py
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▸ print_square(10) and return_square(10) appear to do the same thing, 
but they are different.  

▸ print_square(10) is actually printing to the shell inside the function. 

▸ return_square(10) evaluates to 100, then that value is printed because 
the default behavior for the shell is to print the value.  

▸ This difference is highlighted in the next 4 statements: 

▸ x = print_square(10) calls print_square(10) which prints but does 
NOT return a value. Therefore, x remains undefined. 

▸ y = return_square(10) calls return_square(10) which does NOT 
print out the value (100) but returns it, therefore y is assigned the value 100.



PRINT FUNCTION

print_vs_return.py
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▸ If you hit Run (green triangle), you get:



PRINT FUNCTION

print_vs_return.py
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▸ When you run a file, it starts at the top and executes each statement/line one at a time. 

▸ print_square(5) prints 25. 

▸ print("#") prints # 

▸ return_square(5)  does NOTHING. It returns a value, but then we don't do anything with it (just as if 
we'd typed 5*5 there) so the result of the calculation is lost. 

▸ print("##") prints ## 

▸ print(print_square(5)) calls  print_square(5) which again prints 25. Then, when we return, 
we try and print out the value that was returned from print_square(5). Since print_square does 
not return a value, we get “None”.  

▸ print("###") prints ### 

▸ print(return_square(5)) prints 25 because return_square(5) returned it! 

▸ print("####") prints ###



PRINT FUNCTION

return statement
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▸ When the interpreter reaches a return statement the 
program indicates a disruption in flow.  

▸ We have to leave that function. 

▸ Therefore any code in a function body that directly 
follows a return statement cannot be reached.
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MULTILINE STRINGS AND DOCSTRINGS

Multiline strings
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▸ So far we've seen double quotes and single quotes to 
enclose strings. 

▸ If we want a string to span over multiple lines we have a 
few options 

▸ there is a special character '\n' that represents the end 
of the line. E.g., 



MULTILINE STRINGS AND DOCSTRINGS

Multiline strings using triple quotes
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▸ Previous approach has a few drawbacks: 

▸ hard to read as a human 

▸ hard to get formatting/alignment right 

▸ if it's a long string (e.g., a paragraph) it's going to go off the screen 

▸ pain to copy and paste multiline text from somewhere else 

▸ Use triple quotes instead, e.g., 

▸



MULTILINE STRINGS AND DOCSTRINGS

Docstrings
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▸ Docstring: a string immediately following a definition. 

▸ Another form of commenting.



MULTILINE STRINGS AND DOCSTRINGS

Using the help function to read docstrings
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▸ If you pass a method as an argument to the help function, you will get 
back the docstring of that method. E.g., 

▸ This can be VERY useful when you're using code that you haven't written!



MULTILINE STRINGS AND DOCSTRINGS

Conventions
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▸ We're going to be defining docstrings for ALL functions we 
write from here on out. 

▸ We’ll always use triple quotes for docstrings (even if 
they're just one line). 

▸ For simple functions, a one line docstring is sufficient. 

▸ For longer ones, first give a description of what it does, 
then describe what each of the parameters represents.



MULTILINE STRINGS AND DOCSTRINGS

Good style

20

▸ Use good variable/function names. 

▸ Use whitespace (both vertical and horizontal) to make 
code more readable. 

▸ Comment code, including both comments and docstrings. 

▸ Try and write code as simply as possible (more on this as 
we go).
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TURTLE MODULE

Modules
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▸ Module: a collection of functions and variables. 

▸ Modules allow us to use code that other people have written. 

▸ For example, there is a module called math that has many of the math functions you might 
want. 

▸ We can look at the documentation for this module online by searching for "math python" or by 
going to https://docs.python.org/3/ and browsing searching there. 

▸ https://docs.python.org/3/library/math.html 

▸ logs 

▸ sqrt 

▸ trigonometric functions 

▸ constants

https://docs.python.org/3/
https://docs.python.org/3/library/math.html


TURTLE MODULE

Importing modules
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▸ If we want to use a module, we need to tell the program to include it with our program. To do this, we 
need to "import" it. 

▸ There are many ways of importing modules (some better than others). 

▸ For now, we're going to import the functions and variables into our program as if they were local (i.e. just 
as if we'd written them in our program). 

▸ this is convenient for now, but in some situations there are better ways of doing it (more on this later) 

▸ This statement has multiple components: 

▸ from is a keyword, 

▸ math is the name of the module, 

▸ import loads the module into our program, 

▸ * means everything, i.e. load everything included in the math module.



TURTLE MODULE

turtle module
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▸ The turtle module implements a set of commands similar to the Logo programming language 

▸ The basic idea is that you control the movements of a turtle (in our case, it will be an arrow) through basic 
commands such as: 

▸ forward(distance): Move the turtle forward by the specified distance, in the direction the turtle is headed.

▸ backward(distance): Move the turtle backward by distance, opposite to the direction the turtle is headed. 
Do not change the turtle’s heading.

▸ right(angle): Turn turtle right by angle units.

▸ left(angle): Turn turtle left by angle units.

▸ …and many others 

▸ As the turtle moves, it draws a line behind it, so by giving it different commands, we can draw things on the screen! 

▸ Check the documentation for the turtle class online 

▸ You'll be getting more comfortable with this documentation as part of next week’s lab.

http://en.wikipedia.org/wiki/Logo_(programming_language)
http://docs.python.org/library/turtle.html
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turtle module
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TURTLE MODULE

Let’s move our turtle!
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▸ How would you create a square? 

▸ forward(some_length)

  right(90)

  forward(some_length)

  right(90)

  forward(some_length)

  right(90)

  forward(some_length)



TURTLE MODULE

Let’s move our turtle!
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▸ This seems like a lot of repetitive typing. Let's say we can tell the turtle to 
repeat some statements, would there be a better way of creating a square? 

▸ go forward some length and then turn right, repeat this 4 times
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FOR LOOPS

Python for loops
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▸ Python has a number of different "loop" structures that allow us to do 
repetition (computers are really good at doing repetitive tasks!) 

▸ The for loop is one way of doing this 

▸ There are a number of ways we can use the for loop, but for now the basic 
structure we'll use is: 

for some_variable in range(num_iterations):

    statement1

    statement2

    ...



FOR LOOPS

Python for loops syntaxes
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for some_variable in range(num_iterations):

    statement1

    statement2

    …
‣ for is a keyword 

‣ in is a keyword 

‣ range is a function that we'll use to tell Python how many repetitions we want 

‣ num_iterations is the number of iterations that we want the loop to do 

‣ some_variable is a local variable whose scope (where it can be referred to) is only within the for loop 

‣ some_variable will take on the values from 0 to num_iterations-1 as each iteration of the loop occurs 

‣ We’re computer scientists so we start counting at zero :)  

‣ for example, in the first iteration, it will be 0, the second time 1, the third time 2, etc.we're computer scientists so we start counting 
at zero :) 

‣ Don't forget the ':' at the end! 

‣ Like with defining functions, Python uses indenting to tell which statements belong in the for loop



FOR LOOPS

What would this code do?
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FOR LOOPS

An iterative square
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ASSIGNED READINGS AND PRACTICE PROBLEMS

Resources

▸ Textbook: Continue reading Chapter 4. 

▸ print_vs_return.txt 

▸ multiline_strings.txt 

▸ bbq-functions-commented.txt 

▸ turtle-examples.txt
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Homework
▸ (Work in progress) - Assignment 1

Practice Problems
▸ Practice 1 (solution)

https://runestone.academy/ns/books/published//thinkcspy/PythonTurtle/toctree.html
https://cs.pomona.edu/classes/cs51a/examples/print_vs_return.txt
https://cs.pomona.edu/classes/cs51a/examples/multiline_strings.txt
https://cs.pomona.edu/classes/cs51a/examples/bbq-functions-commented.txt
https://cs.pomona.edu/classes/cs51a/examples/turtle-examples.txt
https://cs.pomona.edu/classes/cs51a/problems/practice1.txt
https://cs.pomona.edu/classes/cs51a/problems/practice1-solution.txt

