
CS051A
INTRO TO COMPUTER SCIENCE WITH TOPICS IN AI

3: Turtle and for loops

Alexandra Papoutsaki

she/her/hers

Lectures

01-26-2022

David Kauchak

he/him/his

Lectures

Zilong Ye

he/him/his

Labs

TODAY’S LECTURE IN A NUTSHELL

Lecture 3: Turtle and for loops

▸ Administrative

▸ print function

▸ Multiline strings and docstrings

▸ Turtle module

▸ For loops

2

ADMINISTRATIVE

This week

3

▸ All course handouts can be found on the course website

▸ https://cs.pomona.edu/classes/cs51a/

▸ First assignment due this coming Sunday.

▸ If you have any questions, join our office hours and mentor
sessions.

▸ Schedule is posted on website.

▸ Mentor sessions Zoom links on Slack.

https://cs.pomona.edu/classes/cs51a/
https://cs.pomona.edu/classes/cs51a/assignments/assign1.pdf

TODAY’S LECTURE IN A NUTSHELL

Lecture 3: Turtle and for loops

▸ Administrative

▸ print function

▸ Multiline strings and docstrings

▸ Turtle module

▸ For loops

4

PRINT FUNCTION

print function

5

▸ Use it when you want to “print” (i.e. display on the screen)
certain expressions (e.g., numbers, strings, contents of
variables, messages, etc.).

▸ Extremely useful for figuring out how our code works.

PRINT FUNCTION

Using the print function to understand our code

6

▸ If you wanted to figure out why it was that high, you could
temporarily add some print statements in the code.

PRINT FUNCTION

Don’t forget to remove unnecessary print statements

7

▸ We can dig further if we'd like by adding more print statements.

▸ E.g.,

▸ When you're done, don’t forget to
REMOVE ALL PRINT STATEMENTS!

▸ In most cases, we're adding print statements to help us debug
our program.

▸ debugging: the process of finding and removing
programming errors.

PRINT FUNCTION

print vs return

8

▸ print

▸ the print function displays the value to the screen/shell.

▸ return

▸ a return statement has two parts, return [expression]

▸ When the program gets to this line, it evaluates the expression.

▸ Whatever value this expression evaluates to then is "returned"
from that function and represents the value at where the
function was called.

PRINT FUNCTION

print_vs_return.py

9

▸ Similar calculations but VERY different behavior.

PRINT FUNCTION

print_vs_return.py

10

▸ print_square(10) and return_square(10) appear to do the same thing,
but they are different.

▸ print_square(10) is actually printing to the shell inside the function.

▸ return_square(10) evaluates to 100, then that value is printed because
the default behavior for the shell is to print the value.

▸ This difference is highlighted in the next 4 statements:

▸ x = print_square(10) calls print_square(10) which prints but does
NOT return a value. Therefore, x remains undefined.

▸ y = return_square(10) calls return_square(10) which does NOT
print out the value (100) but returns it, therefore y is assigned the value 100.

PRINT FUNCTION

print_vs_return.py

11

▸ If you hit Run (green triangle), you get:

PRINT FUNCTION

print_vs_return.py

12

▸ When you run a file, it starts at the top and executes each statement/line one at a time.

▸ print_square(5) prints 25.

▸ print("#") prints #

▸ return_square(5) does NOTHING. It returns a value, but then we don't do anything with it (just as if
we'd typed 5*5 there) so the result of the calculation is lost.

▸ print("##") prints ##

▸ print(print_square(5)) calls print_square(5) which again prints 25. Then, when we return,
we try and print out the value that was returned from print_square(5). Since print_square does
not return a value, we get “None”.

▸ print("###") prints ###

▸ print(return_square(5)) prints 25 because return_square(5) returned it!

▸ print("####") prints ###

PRINT FUNCTION

return statement

13

▸ When the interpreter reaches a return statement the
program indicates a disruption in flow.

▸ We have to leave that function.

▸ Therefore any code in a function body that directly
follows a return statement cannot be reached.

TODAY’S LECTURE IN A NUTSHELL

Lecture 3: Turtle and for loops

▸ Administrative

▸ print function

▸ Multiline strings and docstrings

▸ Turtle module

▸ For loops

14

MULTILINE STRINGS AND DOCSTRINGS

Multiline strings

15

▸ So far we've seen double quotes and single quotes to
enclose strings.

▸ If we want a string to span over multiple lines we have a
few options

▸ there is a special character '\n' that represents the end
of the line. E.g.,

MULTILINE STRINGS AND DOCSTRINGS

Multiline strings using triple quotes

16

▸ Previous approach has a few drawbacks:

▸ hard to read as a human

▸ hard to get formatting/alignment right

▸ if it's a long string (e.g., a paragraph) it's going to go off the screen

▸ pain to copy and paste multiline text from somewhere else

▸ Use triple quotes instead, e.g.,

▸

MULTILINE STRINGS AND DOCSTRINGS

Docstrings

17

▸ Docstring: a string immediately following a definition.

▸ Another form of commenting.

MULTILINE STRINGS AND DOCSTRINGS

Using the help function to read docstrings

18

▸ If you pass a method as an argument to the help function, you will get
back the docstring of that method. E.g.,

▸ This can be VERY useful when you're using code that you haven't written!

MULTILINE STRINGS AND DOCSTRINGS

Conventions

19

▸ We're going to be defining docstrings for ALL functions we
write from here on out.

▸ We’ll always use triple quotes for docstrings (even if
they're just one line).

▸ For simple functions, a one line docstring is sufficient.

▸ For longer ones, first give a description of what it does,
then describe what each of the parameters represents.

MULTILINE STRINGS AND DOCSTRINGS

Good style

20

▸ Use good variable/function names.

▸ Use whitespace (both vertical and horizontal) to make
code more readable.

▸ Comment code, including both comments and docstrings.

▸ Try and write code as simply as possible (more on this as
we go).

TODAY’S LECTURE IN A NUTSHELL

Lecture 3: Turtle and for loops

▸ Administrative

▸ print function

▸ Multiline strings and docstrings

▸ Turtle module

▸ For loops

21

TURTLE MODULE

Modules

22

▸ Module: a collection of functions and variables.

▸ Modules allow us to use code that other people have written.

▸ For example, there is a module called math that has many of the math functions you might
want.

▸ We can look at the documentation for this module online by searching for "math python" or by
going to https://docs.python.org/3/ and browsing searching there.

▸ https://docs.python.org/3/library/math.html

▸ logs

▸ sqrt

▸ trigonometric functions

▸ constants

https://docs.python.org/3/
https://docs.python.org/3/library/math.html

TURTLE MODULE

Importing modules

23

▸ If we want to use a module, we need to tell the program to include it with our program. To do this, we
need to "import" it.

▸ There are many ways of importing modules (some better than others).

▸ For now, we're going to import the functions and variables into our program as if they were local (i.e. just
as if we'd written them in our program).

▸ this is convenient for now, but in some situations there are better ways of doing it (more on this later)

▸ This statement has multiple components:

▸ from is a keyword,

▸ math is the name of the module,

▸ import loads the module into our program,

▸ * means everything, i.e. load everything included in the math module.

TURTLE MODULE

turtle module

24

▸ The turtle module implements a set of commands similar to the Logo programming language

▸ The basic idea is that you control the movements of a turtle (in our case, it will be an arrow) through basic
commands such as:

▸ forward(distance): Move the turtle forward by the specified distance, in the direction the turtle is headed.

▸ backward(distance): Move the turtle backward by distance, opposite to the direction the turtle is headed.
Do not change the turtle’s heading.

▸ right(angle): Turn turtle right by angle units.

▸ left(angle): Turn turtle left by angle units.

▸ …and many others

▸ As the turtle moves, it draws a line behind it, so by giving it different commands, we can draw things on the screen!

▸ Check the documentation for the turtle class online

▸ You'll be getting more comfortable with this documentation as part of next week’s lab.

http://en.wikipedia.org/wiki/Logo_(programming_language)
http://docs.python.org/library/turtle.html

TURTLE MODULE

turtle module

25

▸ The turtle module implements a set of commands similar to the Logo programming language

▸ The basic idea is that you control the movements of a turtle (in our case, it will be an arrow) through basic
commands such as:

▸ forward(distance): Move the turtle forward by the specified distance, in the direction the turtle is headed.

▸ backward(distance): Move the turtle backward by distance, opposite to the direction the turtle is headed.
Do not change the turtle’s heading.

▸ right(angle): Turn turtle right by angle units.

▸ left(angle): Turn turtle left by angle units.

▸ …and many others

▸ As the turtle moves, it draws a line behind it, so by giving it different commands, we can draw things on the screen!

▸ Check the documentation for the turtle class online

▸ You'll be getting more comfortable with this documentation as part of next week’s lab.

http://en.wikipedia.org/wiki/Logo_(programming_language)
http://docs.python.org/library/turtle.html

TURTLE MODULE

Let’s move our turtle!

26

▸ How would you create a square?

▸ forward(some_length)

 right(90)

 forward(some_length)

 right(90)

 forward(some_length)

 right(90)

 forward(some_length)

TURTLE MODULE

Let’s move our turtle!

27

▸ This seems like a lot of repetitive typing. Let's say we can tell the turtle to
repeat some statements, would there be a better way of creating a square?

▸ go forward some length and then turn right, repeat this 4 times

TODAY’S LECTURE IN A NUTSHELL

Lecture 3: Turtle and for loops

▸ Administrative

▸ print function

▸ Multiline strings and docstrings

▸ Turtle module

▸ For loops

28

FOR LOOPS

Python for loops

29

▸ Python has a number of different "loop" structures that allow us to do
repetition (computers are really good at doing repetitive tasks!)

▸ The for loop is one way of doing this

▸ There are a number of ways we can use the for loop, but for now the basic
structure we'll use is:

for some_variable in range(num_iterations):

 statement1

 statement2

 ...

FOR LOOPS

Python for loops syntaxes

30

for some_variable in range(num_iterations):

 statement1

 statement2

 …
‣ for is a keyword

‣ in is a keyword

‣ range is a function that we'll use to tell Python how many repetitions we want

‣ num_iterations is the number of iterations that we want the loop to do

‣ some_variable is a local variable whose scope (where it can be referred to) is only within the for loop

‣ some_variable will take on the values from 0 to num_iterations-1 as each iteration of the loop occurs

‣ We’re computer scientists so we start counting at zero :)

‣ for example, in the first iteration, it will be 0, the second time 1, the third time 2, etc.we're computer scientists so we start counting
at zero :)

‣ Don't forget the ':' at the end!

‣ Like with defining functions, Python uses indenting to tell which statements belong in the for loop

FOR LOOPS

What would this code do?

31

FOR LOOPS

An iterative square

32

ASSIGNED READINGS AND PRACTICE PROBLEMS

Resources

▸ Textbook: Continue reading Chapter 4.

▸ print_vs_return.txt

▸ multiline_strings.txt

▸ bbq-functions-commented.txt

▸ turtle-examples.txt

33

Homework
▸ (Work in progress) - Assignment 1

Practice Problems
▸ Practice 1 (solution)

https://runestone.academy/ns/books/published//thinkcspy/PythonTurtle/toctree.html
https://cs.pomona.edu/classes/cs51a/examples/print_vs_return.txt
https://cs.pomona.edu/classes/cs51a/examples/multiline_strings.txt
https://cs.pomona.edu/classes/cs51a/examples/bbq-functions-commented.txt
https://cs.pomona.edu/classes/cs51a/examples/turtle-examples.txt
https://cs.pomona.edu/classes/cs51a/problems/practice1.txt
https://cs.pomona.edu/classes/cs51a/problems/practice1-solution.txt

