CS051A

INTRO TO COMPUTER SCIENCE WITH TOPICS IN Al
J: Turtle and for loops

TODAY'S LECTURE IN A NUTSHELL

Lecture 3: Turtle and for loops

» Administrative

» print function

» Multiline strings and docstrings
» Turtle module

» Forloops

ADMINISTRATIVE 3
This week

» All course handouts can be found on the course website

» https://cs.pomona.edu/classes/cs51a/

» First assignment due this coming Sunday.

» If you have any questions, join our office hours and mentor
sessions.

» Schedule is posted on website.

» Mentor sessions Zoom links on Slack.

https://cs.pomona.edu/classes/cs51a/
https://cs.pomona.edu/classes/cs51a/assignments/assign1.pdf

TODAY'S LECTURE IN A NUTSHELL

Lecture 3: Turtle and for loops

» Administrative

» print function

» Multiline strings and docstrings
» Turtle module

» Forloops

PRINT FUNCTION

print function

» Use it when you want to “print” (i.e. display on the screen)
certain expressions (e.g., numbers, strings, contents of
variables, messages, etc.).

» Extremely useful for figuring out how our code works.

“‘ bbqg-functions.py

bbg_cost(angie, jasmine, num_people):
soda_cost =
hotdog_cost =

num_hotdogs = hotdogs(angie, jasmine)
num_sodas = soda(num_people)

num_sodas * soda_cost + num_hotdogs * hotdog_cost

PRINT FUNCTION

Using the print function to understand our code

bbg_cost()

13 7

» If you wanted to figure out why it was that high, you could
temporarily add some print statements in the code.

e bbg-functions.py

bbg_cost(angie, jasmine, num_people):
soda_cost =

bbg_cost(
hotdogs: 13

hotdog_cost =

num_hotdogs = hotdogs(angie, jasmine)

sodas: 12
15.75

num_sodas = soda(num_people)

(+ str(num_hotdogs))
nt (+ str(num_sodas))

num_sodas * soda_cost + num_hotdogs * hotdog_cost

PRINT FUNCTION

Don’t forget to remove unnecessary print statements

» We can dig further if we'd like by adding more print statements.

) E.g., rint + str(num_sodas * soda_cost))

» When you're done, don't forget to
REMOQOVE ALL PRINT STATEMENTS!

» In most cases, we're adding print statements to help us debug
our program.

» debugging: the process of finding and removing
programming errors.

PRINT FUNCTION

print vs return

» print
» the print function displays the value to the screen/shell.
» return

» a return statement has two parts, return [expression]

» When the program gets to this line, it evaluates the expression.

» Whatever value this expression evaluates to then is "returned"
from that function and represents the value at where the
function was called.

PRINT FUNCTION

print_vs_return.py

» Similar calculations but VERY different behavior.

print_square(10)
100

e Print_vs_return.py
return_square(10)

print_square(number): 100

rint(number * number) print_square(10)

100

return_square(number): y = return_square(10)

number * number

PRINT FUNCTION 10

print_vs_return.py

» print_square(1l0) and return_square(10) appearto do the same thing,
but they are different.

» print_square(10) is actually printing to the shell inside the function.

» return_square(10) evaluates to 100, then that value is printed because
the default behavior for the shell is to print the value.

» This difference is highlighted in the next 4 statements:

» X = print_square(10) calls print_square(10) which prints but does
NOT return a value. Therefore, X remains undefined.

» y = return_square(10) calls return_square(10) which does NOT
print out the value (100) but returns it, therefore y is assigned the value 100.

PRINT FUNCTION

print_vs_return.py

print_square(5)

int("#")

return_square(5)

nt()

int(print_square(5))
()

int(return_square(5))

int()

» If you hit Run (green triangle), you get:

11

PRINT FUNCTION 12

print_vs_return.py

» When you run a file, it starts at the top and executes each statement/line one at a time.
» print_square(5) prints 25.
» print("#") prints #

» return_square(5) does NOTHING. It returns a value, but then we don't do anything with it (just as if
we'd typed 5*5 there) so the result of the calculation is lost.

» print("##") prints ##

» print(print_square(5)) calls print_square(5) which again prints 25. Then, when we return,
we try and print out the value that was returned from print_square(5). Since print_square does
not return a value, we get “None”.

» print("###") prints ###
» print(return_square(5)) prints 25 because return_square(5) returned it!

» print("#RE##R") prints ###

PRINT FUNCTION

return statement

» When the interpreter reaches a return statement the
program indicates a disruption in flow.

» We have to leave that function.

» Therefore any code in a function body that directly
follows a return statement cannot be reached.

13

TODAY'S LECTURE IN A NUTSHELL

14

Lecture 3: Turtle and for loops

» Administrative

» print function

» Multiline strings and docstrings
» Turtle module

» Forloops

MULTILINE STRINGS AND DOCSTRINGS
Multiline strings

» So far we've seen double quotes and single quotes to
enclose strings.

» If we want a string to span over multiple lines we have a
few options

» there is a special character '\n"' that represents the end
of the line. E.g.,

o Multiline_strings.py This 1s a string

that spans over multiple

(

lines

15

MULTILINE STRINGS AND DOCSTRINGS 16

Multiline strings using triple quotes

» Previous approach has a few drawbacks:

4

4

hard to read as a human

nard to get formatting/alignment right

» ifit's a long string (e.g., a paragraph) it's going to go off the screen

» pain to copy and paste multiline text from somewhere else

» Use triple quotes instead, e.g.,

% multiline_strings.py This 1s a multiline strinc

't I can continue to type

over many different 1lines
and 1t won't stop until

I close the strings

MULTILINE STRINGS AND DOCSTRINGS

Docstrings

» Docstring: a string immediately following a definition.

» Another form of commenting.

e bbqg-functions-commented.py

hotdogs(angie, jasmine):

chris = * jasmine
brenda = chris -

wenting = (brenda + 1) // 2 +

total_hotdogs = angie + jasmine + chris + brenda + wenting
total_hotdogs

17

MULTILINE STRINGS AND DOCSTRINGS

Using the help function to read docstrings

» If you pass a method as an argument to the help function, you will get
back the docstring of that method. E.g.,

help(hotdogs)

Help on function hotdogs in module __main__:

hotdogs(angie, jasmine)

Returns the number of hotdogs required for the party.

Parameters:
angie -- the number of hotdogs angie will eat
jasmine -- the number of hotdogs jasmine will eat

» This can be VERY useful when you're using code that you haven't written!

18

MULTILINE STRINGS AND DOCSTRINGS 19
Conventions

» We're going to be defining docstrings for ALL functions we
write from here on out.

» We'll always use triple quotes for docstrings (even if
they're just one line).

» For simple functions, a one line docstring is sufficient.

» Forlonger ones, first give a description of what it does,
then describe what each of the parameters represents.

MULTILINE STRINGS AND DOCSTRINGS

Good style

» Use good variable/function names.

» Use whitespace (both vertical and horizontal) to make
code more readable.

» Comment code, including both comments and docstrings.

» Try and write code as simply as possible (more on this as
we go).

20

TODAY'S LECTURE IN A NUTSHELL

21

Lecture 3: Turtle and for loops

» Administrative

» print function

» Multiline strings and docstrings
» Turtle module

» Forloops

TURTLE MODULE 22

Modules

» Module: a collection of functions and variables.
» Modules allow us to use code that other people have written.

» For example, there is a module called math that has many of the math functions you might

want.

» We can look at the documentation for this module online by searching for "math python" or by
going to https://docs.python.org/3/ and browsing searching there.

» https://docs.python.org/3/library/math.html

» logs
» sqrt
» trigonometric functions

» constants

https://docs.python.org/3/
https://docs.python.org/3/library/math.html

TURTLE MODULE

Importing modules

» If we want to use a module, we need to tell the program to include it with our program. To do this, we
need to "import" it.

» There are many ways of importing modules (some better than others).

» For now, we're going to import the functions and variables into our program as if they were local (i.e. just
as if we'd written them in our program).

» this is convenient for now, but in some situations there are better ways of doing it (more on this later)

» This statement has multiple components:

» fromis a keyword,

» math is the name of the module,

» 1mport loads the module into our program,

» ¥ means everything, i.e. load everything included in the math module.

23

TURTLE MODULE 24

turtle module

» The turtle module implements a set of commands similar to the Logo programming language

» The basic idea is that you control the movements of a turtle (in our case, it will be an arrow) through basic
commands such as:

» forward(distance): Move the turtle forward by the specified distance, in the direction the turtle is headed.

» backward(distance): Move the turtle backward by distance, opposite to the direction the turtle is headed.
Do not change the turtle’s heading.

» rightCangle): Turn turtle right by angle units.
» LeftCangle): Turn turtle left by angle units.
» ...and many others

» As the turtle moves, it draws a line behind it, so by giving it different commands, we can draw things on the screen!

» Check the documentation for the turtle class online

» You'll be getting more comfortable with this documentation as part of next week’s lab.

http://en.wikipedia.org/wiki/Logo_(programming_language)
http://docs.python.org/library/turtle.html

TURTLE MODULE 25

turtle module

» The turtle module implements a set of commands similar to the Logo programming language

» The basic idea is that you control the movements of a turtle (in our case, it will be an arrow) through basic
commands such as:

» forward(distance): Move the turtle forward by the specified distance, in the direction the turtle is headed.

» backward(distance): Move the turtle backward by distance, opposite to the direction the turtle is headed.
Do not change the turtle’s heading.

» rightCangle): Turn turtle right by angle units.
» LeftCangle): Turn turtle left by angle units.
» ...and many others

» As the turtle moves, it draws a line behind it, so by giving it different commands, we can draw things on the screen!

» Check the documentation for the turtle class online

» You'll be getting more comfortable with this documentation as part of next week’s lab.

http://en.wikipedia.org/wiki/Logo_(programming_language)
http://docs.python.org/library/turtle.html

TURTLE MODULE

Let's move our turtle!

» How would you create a square?

» forward(some_length)
right(90)
forward(some_length)
right(90)
forward(some_length)
right(90)

forward(some_length)

26

TURTLE MODULE

Let's move our turtle!

I turtle-examples.py square ()

turtle *
random randint

square(length):
forward(length)

right(90)
forward(length)
right(90)
forward(length)
right(90)
forward(length)
right(90)

» This seems like a lot of repetitive typing. Let's say we can tell the turtle to
repeat some statements, would there be a better way of creating a square?

» go forward some length and then turn right, repeat this 4 times

27

TODAY'S LECTURE IN A NUTSHELL

28

Lecture 3: Turtle and for loops

» Administrative

» print function

» Multiline strings and docstrings
» Turtle module

» Forloops

FOR LOOPS 29

Python for loops

» Python has a number of different "loop" structures that allow us to do
repetition (computers are really good at doing repetitive tasks!)

» The for loop is one way of doing this

» There are a number of ways we can use the for loop, but for now the basic
structure we'll use is:

for some_variable in range(num_iterations):
statementl

statement?Z

FOR LOOPS 30

Python for loops syntaxes

for some_variable in range(num_iterations):
statementl

statement?

v

for is a keyword

v

1nis a keyword

v

range is a function that we'll use to tell Python how many repetitions we want

v

num_iterations is the number of iterations that we want the loop to do

v

some_variable is a local variable whose scope (where it can be referred to) is only within the for loop
* some_variable will take on the values from @ to num_iterations-1 as each iteration of the loop occurs
> We're computer scientists so we start counting at zero :)

* for example, in the first iteration, it will be 0, the second time 1, the third time 2, etc.we're computer scientists so we start counting
at zero :)

" Don'tforget the ':' at the end!

» Like with defining functions, Python uses indenting to tell which statements belong in the for loop

FOR LOOPS

What would this code do?

0
1
2
3
4
3
6
7
8
9

31

FOR LOOPS

An iterative square

[o turtle-examples.py

iterative_square(length):
i (4):
forward(length)
right(90)

32

ASSIGNED READINGS AND PRACTICE PROBLEMS

33

Resources

» Textbook: Continue reading Chapter 4.

» print_vs_return.txt

» multiline_strings.txt

» bbag-functions-commented.txt

» turtle-examples.txt

Practice Problems

» Practice 1 (solution)

Homework

» (Work in progress) - Assignment 1

https://runestone.academy/ns/books/published//thinkcspy/PythonTurtle/toctree.html
https://cs.pomona.edu/classes/cs51a/examples/print_vs_return.txt
https://cs.pomona.edu/classes/cs51a/examples/multiline_strings.txt
https://cs.pomona.edu/classes/cs51a/examples/bbq-functions-commented.txt
https://cs.pomona.edu/classes/cs51a/examples/turtle-examples.txt
https://cs.pomona.edu/classes/cs51a/problems/practice1.txt
https://cs.pomona.edu/classes/cs51a/problems/practice1-solution.txt

