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Welcome to lecture 2, everyone! Are there any questions?



TODAY’S LECTURE IN A NUTSHELL

Lecture 2: Functions

▸ Administrative 

▸ Syntax 

▸ Functions
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Let me start with some announcements about class logistics and then we will proceed with learning more Python!



ADMINISTRATIVE

This week
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▸ First (online) lab today or tomorrow.  

▸ Zoom link in Sakai announcement. 

▸ Read handout beforehand. 

▸ Installation of PyCharm. 

▸ Practice with running programs and using the Python shell (console). 

▸ First assignment due this coming Sunday. 

▸ Mentor sessions begin today. 

▸ Check schedule on course website. TAs’ Zoom links on Slack.

This week we will have our first lab. Depending on which lab you have registered for, this will take place on Monday or Tuesday evening. I have sent you an 
announcement on Sakai with the Zoom link to use. Professor Ye has asked you, if possible, to read the handout beforehand. You will get to install PyCharm, the IDE we 
will use in this course to interact with the Python interpreter. You will get to see the two main modes of interaction, the shell (Python console in PyCharm) and how to run 
source code files. We also have the first assignment due this coming Sunday. It will be on topics we will cover today and on Wednesday. Finally, mentor sessions begin 
today. The schedule is posted on the course website and TAs will be posting the Zoom links for this week on Slack. We will notify you about in-person mentor sessions 
later on as we are trying to coordinate with the entire department to spread out TAs.

https://cs.pomona.edu/classes/cs51a/assignments/lab1.pdf
https://cs.pomona.edu/classes/cs51a/assignments/assign1.pdf


TODAY’S LECTURE IN A NUTSHELL

Lecture 2: Functions

▸ Administrative 

▸ Syntax 

▸ Functions I 

▸ Strings 

▸ Functions II
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Are there any questions on class logistics? Let’s continue with learning Python and specifically thinking about the Python syntax.



SYNTAX

Syntax in English and in programming languages
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▸ In English: arrangement of words and phrases to create well-
formed sentences. 

▸ "I like dogs" is syntactically correct 

▸ "I dog like" is not syntactically correct 

▸ Programming languages also have their own syntax, that is their 
own rules of what code valid in that language. 

▸ In contrast to English, programming languages are less forgiving 
to syntax errors: the computer won’t get the gist of our program

In English (and other natural languages), syntax is the arrangement of words and phrases to create well-formed sentences. For example, the sentence "I like dogs" is 
syntactically correct, while the sentence "I dog like" is not. But you probably get the gist of the sentence even if it sounds off. Programming languages also have their 
own syntax, that is their own rules of what code is valid in that language. In contrast to English, programming languages are less forgiving to syntax errors: the computer 
won’t get what our program wants it to do unless we strictly adhere to Python syntax rules.



SYNTAX

Syntax errors
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▸ In our brief Python adventures, have we seen any 
examples of syntax? 

▸ All of the math operations have implicit syntax, e.g., we 
can’t just write 4 + and leave it as is. 

▸ Similar issues can arise if we flip an assignment.

Let’s think of what we covered in Lecture 1, where we mostly saw Python as a mathematical calculator. In that case, we were probably comfortable with the idea that 
math operations have implicit syntax (operand operator operand, e.g., 4+5). We can’t just write 4 + and leave it as is. We also wrote our first Python program to calculate 
the number of hot dogs we would need at a BBQ party and we utilized variables. The syntax for variable assignments needs to be followed precisely. On the left hand, we 
have the name of the variable, followed by the equals sign, and then the value we want to assign to it. E.g., jasmine = 2. We cannot write 2 = jasmine! This would cause a 
syntax error and the Python interpreter would complain and stop reading our code. 



SYNTAX

Syntax errors in PyCharm
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▸ Both the Python shell (console) and program mode will 
recognize syntax errors. 

▸ Luckily, most of the times, Python will indicate the correct 
line that the syntax error occurred. 

▸ Sometimes though, an error might be elsewhere, 
probably before the line that is highlighted.

The good thing in an IDE like PyCharm is that both the Python shell and program mode will recognize syntax errors. Luckily, most of the times, the Python interpreter will 
indicate the correct line that the syntax error occurred. Sometimes though, an error might be elsewhere, probably before the line that is highlighted. 



TODAY’S LECTURE IN A NUTSHELL

Lecture 2: Functions

▸ Administrative 

▸ Syntax 

▸ Functions
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I think we all agree that our computers are more powerful than a calculator that does basic mathematical operations.



FUNCTIONS

Beyond a basic math calculator
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▸ What other mathematical operations might we want from 
our calculator? 

▸ abs, round, min, max etc. 

▸ These operations are supported by functions.

Before we get too excited about the possibilities, what other mathematical operations might we want our calculator to support? We have seen addition, subtraction, 
multiplication, division, power, and remainder. Some examples of additional functionalities to support are ways to get the absolute value, round a value, calculate the min 
or max etc. In Python, these operations are supported by functions. But what are functions?



FUNCTIONS

Functions
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▸ A function in Python has: 

▸ A name 

▸ Zero or more parameters (i.e. inputs) 

▸ Generally, does something 

▸ Gives us back a value (not all functions do this)

A function in Python is a piece of code that has a name, receives input in the form or zero or more parameters, generally does something, and then potentially gives us 
back a value, although not all functions do this.



FUNCTIONS

Built-in Python functions
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▸ abs(number): returns the absolute value of the specified number 

▸ e.g., abs(-2) will return 2. 

▸ round(number): returns a number that is the rounded version of 
the specified number. 

▸ e.g., round(2.8) will return 3. 

▸ int(number): returns the integer part of a specified number by 
throwing away decimals. 

▸ e.g., int(2.8) will return 2.

Let’s look at some built-in Python functions thinking of the more powerful calculator we would like to build. One such function is abs(number) which returns the absolute 
value of the specified number. For example, abs(-2) will give us back 2. Another one is round(number) which returns a rounded version of the specified number. For 
example, round(2.8) will return 3. Finally, int(number) will truncate the decimals and return the integer part of the specified number. E.g., int(2.8) will return 2.



FUNCTIONS

Function type
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▸ type(expression): returns type of the specific expression. E.g., 
 
 
 
 
 

▸ Note that all of these functions take a single parameter and give us 
back (return) a value, 

▸ We'll talk more later about what it means to "give back" a value, but 
some functions will simply "do something" and then not return a value.

Another interesting function is type(expression) which returns the type of the specified expression. For example, type(10) returns int, while type(10/2) returns float 
(remember 10/2 results to 5.0 because division in Python is ‘real’). But, type(10//2) is int because integer division (//) truncates decimal points. Note that all these 
functions take a single parameter and give us back (or return) a value. We'll talk more later about what it means to "give back" a value, but some functions will simply "do 
something" and then not return a value.



FUNCTIONS

Defining your own functions
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▸ Allows you to bundle together code and reuse it. 

▸ Remember, the important components for a function are: 

▸ the name of the function, 

▸ how many parameters the function takes, 

▸ what the function does, 

▸ what value (if any) it returns/gives you back when it's 
done.

Beyond its built-in functions, Python allows you to define your own functions. This is great because you can bundle together code and then reuse it. Remember that the 
important components to define a function are: its name, how many parameters (if any) the function takes, what the function does, and what value (if any) it returns when 
it’s done.



FUNCTIONS

Syntax for defining your own functions
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def function_name(parameter1, parameter2, ...) :

         statement1

         statement2

         ...

         return expression # this is optional

▸ function_name is the name of the function (i.e. what you want it to be called) 

▸ parameter1, parameter2, … are the list of parameters that are expected 

▸ you can use the parameters in the body of the function like variables. 

▸ when you call the function, the number of parameters specifies the number you must supply in the 
function call 

▸ the spacing (tab) indicates which statements are within a function (called the "body" of the function).  

▸ The return statement is the value that we want to return to whoever called the function. It’s not necessary to have 
a return statement.

The syntax for defining your own functions in Python is:  
def function_name(parameter1, parameter2, ...) :

         statement1

         statement2

         ...

         return expression # this is optional

Remember, that:

- function_name is the name of the function (i.e. what you want it to be called)

- parameter1, parameter2, … are the list of parameters that are expected

- You can use the parameters in the body of the function like variables.

- When you call the function, the number of parameters specifies the number you must supply in the function call.

- The spacing (tab) indicates which statements are within a function (called the "body" of the function).

- The return statement is the value that we want to return to whoever called the function. It’s not necessary to have a return statement.



FUNCTIONS

Anything new here?
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Take a look at the simple-functions.txt file which defines five functions. Do you notice anything new?



FUNCTIONS

Strings
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▸ string: a “string” of characters. 

▸ Represent text. 

▸ Denoted by quotes 

▸ You can either use double quotes, e.g., "this is a 
string" or single quotes 'this is also a string' 

▸ But you can't mix the two for any given string 'this is not 
a valid string" 

▸ A new type (we have seen int, and float)

What we have not encountered so far is this new type called string (as a reminder, we have seen int and floats). Strings represent text or a string of characters. They are a 
very useful type and using them can make Python far more powerful than just a math calculator. If you want to work with strings, you will denote them using quotes. You 
can either use double or single quotes but you have to be consistent. I personally favor double quotes because they are more universal across other programming 
languages. 



FUNCTIONS

Writing code with strings
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▸ If you want to concatenate (i.e. combine) two strings, you 
can use the plus sign. E.g., 

▸ If you want to use an int or a float as a string, you 
need to convert it to a string using str function. 

▸

One thing that you can do with strings is that you can concatenate them, that is combine them into one one new string. You can achieve this using the + plus sign. For 
example, “this one string “ + “plus another one” will result to “this one string plus another one”. If you want to use an int or float as strings, not numbers, you will need to 
cover them to a string using the str function, e.g., str(3). Notice that you can’t concatenate strings and numbers, you first need to turn the number into a string otherwise 
you will get an error!



FUNCTIONS

What do the first three functions do?
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▸ dog_years: calculates the number of dog years, given 
human years. 

▸ dog_name: returns the name of the dog (in this case 
“Fido”), as a string. 

▸ interest_calculator: calculates the amount of interest 
earned for a given amount of money at a particular rate.

Looking at the simple-functions.txt source file, what do the first three functions do? dog_years calculates the number of dog years, given human years.  dog_name 
returns the name of the dog (in this case “Fido”), as a string, and finally interest_calculator calculates the amount of interest earned for a given amount of money at a 
particular rate. 




FUNCTIONS

Calling functions
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▸ If we “Run file in Python console", what do you think will 
happen? 

▸ nothing gets printed out! 

▸ but we've now defined new functions that we can use:

What do you think if we right-click on our Python file in PyCharm and click on “Run file in Python console”? Well… nothing really. But the neat thing is that we have now 
defined these functions and we can use or “call” them. For example, dog_years(7) will return 49, dog_name() will return “Fido”, and interest_calculator(1000,3) will return 
30.0.



FUNCTIONS

Parameters and arguments
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▸ parameter:  variable listed inside the parentheses in the function definition. 

▸ argument:  the value passed to the function when calling it. 

▸ Notice that the number of parameters defines how many arguments we 
must specify 

▸ When a function is called: 

▸ we evaluate each of the arguments 

▸ then we execute the function line by line 

▸ if there is a return statement, where the original function call was 
made is replaced by the value returned.

When I talk about functions you will often hear me use the words parameters and arguments. I might mix them up because they are interconnected but they represent 
something slightly different. A parameter is a variable listed inside the parentheses in the function definition. Once you call a function, you will need to pass a value to that 
function. The value that matches a parameter is called an argument. Notice that the number of parameters defines how many arguments we must specify when we call a 
function. When a function is called, we evaluate each of the arguments, then we execute the function body line by line, and at the end, if there is a return statement, we 
return this value which is handed to whomever made the original function call.



FUNCTIONS

Number of parameters and arguments have to agree
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▸ If we try to call one of our functions with the wrong number of 
arguments, we get an error. 
 
 
 

▸ the last line is the most important and tells us what the error was,  
i.e. that the function takes 2 arguments, but we only gave it 1. 

▸ If we knew that we wanted to call some of these functions, we could 
also add this code to the end of the file and then that would get 
executed when we run it.

Keep in mind that the number of parameters and arguments have to agree. If we try to call one of our functions passing it the wrong number of arguments, we will get an 
error as seen in the example of calling interest_calculator and passing it only one instead of two arguments (this can be seen in the last line of the error message). If we 
knew that we wanted to call some of these functions, we could also add this code to the end of the file and then that would get executed when we run it.



FUNCTIONS

dog_stats function
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▸ Say we call the function as dog_stats(2+5). The following will happen: 

▸ First, we'll evaluate the argument to the function (2+5) and get 7 

▸ 7 will then get associated with the parameter years

▸ The first statement in the function calls our other function, dog_name()

▸ the interpreter will go  to the dog_name function and execute its code as defined in its body. 

▸ dog_name will return "Fido", which will then get stored into the variable name. 

▸ The second statement is a call to the dog_years function 

▸ We evaluate its argument (years), which gives us 7

▸ 7 is then passed to dog_years

▸ 7 is associated with the parameter human_years

▸ 7*7 is calculated, giving us 49, which is returned 

▸ 49 is then stored in the variable age. 

▸ Finally, we return the string "Fido" + " is " + "49" + " years old" -> "Fido is 49 years old"

Let’s put everything together by looking at what would happen if we were to call the function dog_stats passing it the argument 2+5: First, we'll evaluate the argument to 
the function (2+5) and get 7. That 7 will then get associated with the parameter years so that we can use it in the function body wherever it says years. The first statement 
in the function calls our other function, dog_name(). The interpreter will go  to the dog_name function and execute its code as defined in its body. dog_name will return 
"Fido", which will then get stored into the variable name. The second statement is a call to the dog_years function. We evaluate its argument (years), which gives us 7. 7 
is then passed to dog_years. 7 is associated with the parameter human_years. 7*7 is calculated, giving us 49, which is returned. 49 is then stored in the variable age. 
Finally, we return the string "Fido" + " is " + "49" + " years old" -> "Fido is 49 years old”. Tadaaa!



FUNCTIONS

Advanced BBQing
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▸ If we look back at our bbq code, we notice that we only 
need information from some of the people to calculate the 
number of hot dogs. 

▸ only angie and jasmine affect the number of hotdogs 
required.

If we look back at our bbq code, we notice that we only need information from some of the people to calculate the number of hot dogs. Who? Only angie and jasmine 
affect the number of hotdogs required. Let’s see how we can write a function to simplify our code.




FUNCTIONS

hotdogs method in bbq-functions.py
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▸ Look at the hotdogs method in bbq-functions.py. What 
does it do? 

▸ same thing as our bbq program, just now we've 
encapsulated it as a program where we can pass it 
parameters. 

Look at the hotdogs method in bbq-functions.py. What does it do? Same thing as our bbq program, just now we've encapsulated it as a program where we can pass it 
parameters. 



FUNCTIONS

hotdogs method in bbq-functions.py
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▸ Look at the hotdogs method in bbq-functions.py. It 
does as our bbq program, just now we've encapsulated it 
as a program where we can pass it parameters. 

Look at the hotdogs method in bbq-functions.py. What does it do? Same thing as our bbq program, just now we've encapsulated it as a program where we can pass it 
parameters. We could now call the hotdogs function just passing how many hotdogs Angine and Jasmine want and we would get the new total very easily!



FUNCTIONS

 Rest of the methods in bbq-functions.py?
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▸ Look at the other functions in bbq-functions.py code: what 
do they do? 

▸ The rest of these functions don't really have any new features 
from the ones we've previously seen. 

▸ Notice that we can build up more complicated functions by 
using the simpler functions. 

▸ Don't forget that if you want to combine a string and an 
int/float, you need to convert the int/float to a string 
using the str method.

Look at the other functions in bbq-functions.py code: what do they do? The rest of these functions don't really have any new features from the ones we've previously 
seen. Notice that we can build up more complicated functions by using the simpler functions. Don't forget that if you want to combine a string and an int/float, you need 
to convert the int/float to a string using the str method.



FUNCTIONS

Look at bbq-functions-bad-style.py
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▸ What does this code do? 

▸ These have the same functionality as the first three 
functions in bbq-functions.py code. 

▸ But... they're much harder to read and understand.  

▸ Use good variable names, good function names and 
whitespace to help make the code more readable (this is 
called using good style)!

Look now at the file bbq-functions-bad-style.py. What does this code do? These have the same functionality as the first three functions in bbq-functions.py cod e.But… 
they're much harder to read and understand.  Remember to use good variable names, good function names and whitespace to help make the code more readable (this is 
called using good style)!



ASSIGNED READINGS AND PRACTICE PROBLEMS

Resources

▸ Textbook: Continue reading Chapter 1 and 2 

▸ simple-functions.txt 

▸ bbq-functions.txt 

▸ bbq-functions-bad-style.txt
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Homework
▸ (Work in progress) - Assignment 1

https://runestone.academy/ns/books/published//thinkcspy/GeneralIntro/toctree.html
https://runestone.academy/ns/books/published//thinkcspy/SimplePythonData/toctree.html
https://cs.pomona.edu/classes/cs51a/examples/simple-functions.txt
https://cs.pomona.edu/classes/cs51a/examples/bbq-functions.txt
https://cs.pomona.edu/classes/cs51a/examples/bbq-functions-bad-style.txt

