
CS051A
INTRO TO COMPUTER SCIENCE WITH TOPICS IN AI

11: More recursion

Alexandra Papoutsaki

she/her/hers

Lectures

02-23-2022

David Kauchak

he/him/his

Lectures

Zilong Ye

he/him/his

Labs

TODAY’S LECTURE IN A NUTSHELL

Lecture 11: More recursion

▸ Recursion

2

RECURSION

Writing recursive functions

3

1. Define what the function the name and parameters of the function are.

2. Define the recursive case

‣ Pretend you had a working version of your function, but it only works on smaller versions of your current problem.

‣ The recursive problem should be getting "smaller", by some definition of smaller.

‣ E.g., for smaller numbers (like in factorial), lists that are smaller/shorter, strings that are shorter

‣ other ideas:

‣ Sometimes, define it in English first and then translate that into code.

‣ Often, nice to think about it mathematically, using equals.

3. Define the base case

‣ What is the smallest (or simplest) problem? This is often the base case

4. Put it all together

‣ first, check the base case

‣ return something (or do something) for the recursive case

‣ if the base case isn't true

‣ calculate the problem using the recursive definition

‣ return the answer

RECURSION

Recursion is similar to induction in mathematics

4

▸ Proof by induction in mathematics:

▸ 1. show something works the first time (base case).

▸ 2. assume that it works for some time.

▸ 3. show it will work for the next time (i.e. time after "some time”).

▸ 4. therefore, it must work for all the times.

RECURSION

Practice Time

5

▸ Write a recursive function called rec_sum that takes a positive number as a parameter and calculates the sum of the
numbers from 1 up to and including that number.

▸ 1. Define what the header function is:

▸ def rec_sum(n)

▸ 2. Define the recursive case:

▸

▸ Can you rewrite this expression so that there's a sum on the right hand side (that's smaller?)

▸ Another way to think about it: pretend like we have a function called rec_sum that we can use but only on
smaller numbers

▸ rec_sum(n) = ?????? rec_sum(?)

▸ rec_sum(n) = n + rec_sum(n-1)

▸ i.e. the sum of the numbers 1 through n, is n plus the sum of the numbers 1 through n-1

n

∑
i=1

= 1 + 2 + 3 + . . . + (n − 1) + n = ???

RECURSION

Practice Time (cont’d)

6

▸ Write a recursive function called rec_sum that takes a positive number as a parameter and calculates
the sum of the numbers from 1 up to and including that number.

▸ 3. Define the base case:

▸ in each case, the number is getting smaller. What’s the smallest number we would ever want to
have the sum of?

▸ 0. What’s the answer when it's 0? 0!

▸ 4. put it all together! - look at the rec_sum function in recursion.py code

▸ Check the base case first:

▸ if n == 0

▸ Otherwise:

▸ Do exactly our recursive relationship

RECURSION

Practice Time

7

▸ Write a recursive function called rec_sum_list that takes a list of numbers as a parameter and calculates their sum.

▸ 1. Define what the function header is:

▸ def rec_sum_list(some_list)

▸ 2. Define the recursive case:

▸ Pretend like we have a function called rec_sum_list that we can use but only on smaller lists

▸ what would we get back if we called rec_sum_list on everything except the first element?

▸ the sum of all of those elements

▸ how would we get the sum to the entire list?

▸ just add that element to the sum of the rest of the elements

▸ The recursive relationship is:

▸ rec_sum_list(some_list) = some_list[0] + rec_sum_list(some_list[1:])

RECURSION

Practice Time (cont’d)

8

▸ Write a recursive function called rec_sum_list that takes a list of numbers as a parameter and calculates their sum.

▸ 3. Define the base case:

▸ in each case, the list is getting smaller.

▸ Eventually, it will be an empty list. What is the sum of an empty list?

▸ 0.

▸ 4. put it all together! - look at the rec_sum_list function in recursion.py code

▸ Check the base case first:

▸ if some_list == []

▸ Could have also written if len(some_list) == 0

▸ Otherwise:

▸ Do exactly our recursive relationship

RECURSION

Practice Time (cont’d)

9

▸ What does this work? Let’s look at an example

▸ rec_sum_list([1, 2, 3, 4])

▸ 1 + rec_sum_list([2, 3, 4])

▸ 2 + rec_sum_list([3, 4])

▸ 3 + rec_sum_list([4])

▸ 4 + rec_sum_list([])

▸ 4 + 0

▸ 3 + 4

▸ 2 + 7

▸ 1 + 9

▸ 10

▸ Look at rec_sum_list_print in recursion.py to see how print statements reveal the recursion.

https://cs.pomona.edu/classes/cs51a/examples/recursion.txt

RECURSION

Practice Time

10

▸ Write a recursive function called reverse that takes a string as a parameter and reverses the string.

▸ 1. Define what the function header is:

▸ def reverse(some_string)

▸ 2. Define the recursive case:

▸ Pretend like we have a function called reverse that we can use but only on smaller strings

▸ To reverse a string:

▸ remove the first character,

▸ reverse the remaining characters,

▸ put that first character at the end

▸ The recursive relationship is:

▸ reverse(some_string) = reverse(some_string[1:]) + some_string[0]

RECURSION

Practice Time (cont’d)

11

▸ Write a recursive function called reverse that takes a string as a parameter and reverses the string

▸ 3. Define the base case:

▸ in each case, the string is getting shorter.

▸ Eventually, it will be an empty string. What is the reverse of an empty string?

▸ ""

▸ 4. put it all together! - look at the reverse function in recursion.py code

▸ Check the base case first:

▸ if some_string == ""

▸ Could have also written if len(some_string) == 0

▸ Otherwise:

▸ Do exactly our recursive relationship

▸ Look at reverse_print in recursion.py to see how print statements reveal the recursion.

https://cs.pomona.edu/classes/cs51a/examples/recursion.txt

RECURSION

Practice Time

12

▸ Write a recursive function called power that takes a base and an exponent as
parameters and returns .

▸ That is it calculates base**exponent without using the ** operator. You can
assume a positive exponent.

▸ 1. Define what the function header is:

▸ def power(base, exponent)

▸ 2. Define the recursive case:

▸

baseexponent

baseexponent = baseexponent−1 * base

RECURSION

Practice Time (cont’d)

13

▸ Write a recursive function called power that takes a base and an exponent as parameters and returns .

▸ 3. Define the base case:

▸ in each case, the exponent is getting smaller.

▸ Eventually, the exponent will be 0.

▸

▸ 4. put it all together! - look at the power function in recursion.py code

▸ Check the base case first:

▸ if exponent == 0

▸ Otherwise:

▸ Do exactly our recursive relationship.

baseexponent

base0 = 1

RECURSION

Practice Time

14

▸ What does rec_mystery function in mystery_recursion.py do?

▸ Recursive function.

▸ Work through a small example, e.g., rec_mystery([2, 4, 3, 1])

▸ rec_mystery([2, 4, 3, 1]) # compares m = 4 and l[0] = 2 and returns
4

▸ rec_mystery([4, 3, 1]) # compares m = 3 and l[0] = 4 and returns
4

▸ rec_mystery([3, 1]) # compares m = 1 and l[0] = 3 and returns
3

▸ rec_mystery([1]) # returns 1

▸ Returns the maximum element in the list!

https://cs.pomona.edu/classes/cs51a/examples/mystery_recursion.txt

RECURSION

Practice Time (cont’d)

15

▸ Returns the maximum element in the list! How?

▸ 1. rec_max(l)

▸ 2. rec_max(l) = ??? rec_max(l[1:])

▸ assume/trust that the recursive call works

▸ if it does, then it will return the largest value in l[1:]

▸ the largest value of the whole list is then either the first element (l[0]) or the largest value in the rest of the list
(rec_max(l[1:])

▸ 3. The list will get smaller and smaller. max([]) doesn't really make sense, so our base case will be when there's a single
element.

▸ Recursive case:

▸ make a recursive call on the rest of the list

▸ store that value in m

▸ compare m to the first element and return whichever is larger

RECURSION

Practice Time

16

▸ Look at the spiral function in turtle_recursion.py do?

▸ what would the picture look like if I called spiral(80, 50)

▸ What does this function do?

▸ Draws a spiral on the screen recursively.

▸ forward 80

▸ left 30

▸ spiral(76, 49)

▸ forward 76

▸ left 30

▸ spiral(72.2, 48)

▸ forward 72.2

▸ left 30

https://cs.pomona.edu/classes/cs51a/examples/turtle_recursion.txt

RECURSION

Practice Time (cont’d)

17

▸ When does it stop?

▸ When levels = 0.

▸ We put a dot there to make it explicit.

▸ Repeat 50 times:

▸ forward length

▸ left 30

▸ reduce length by 5%

RECURSION

Practice Time (cont’d)

18

▸ What if we wanted to end up back at the starting point, but we couldn't pick the pen up?
We could trace our steps backwards.

▸ Assume that the recursive call returns back to its starting point. What would we need to
do to make sure that our call returned back to the starting point?

▸ Add the following after the recursive call:

▸ right(30)

▸ backward(length)

▸ if we run it now, we draw the spiral all the way down, and then we retrace backwards.:

▸ each call to spiral retraces its own part after the recursive call.

▸ the stack keeps track of each of the recursive calls.

RECURSION

Practice Time

19

▸ Run the broccoli_demo function in turtle_recursion.py

▸ 1. Define what the header function is:

▸ broccoli(x, y, length, angle)

▸ 2. Define the recursive case:

▸ broccoli is a line with three other broccolis at the end:

▸ one directly straight out

▸ one 20 degrees to the left

▸ one 20 degrees to the right

▸ the three other broccolis should be smaller/shorter than the current

https://cs.pomona.edu/classes/cs51a/examples/turtle_recursion.txt

RECURSION

Practice Time (cont’d)

20

▸ Run the broccoli_demo function in turtle_recursion.py

▸ 3. Define the base case:

▸ in each case, the length of the broccoli to be drawn gets shorter.

▸ We stop at length < 10 and place a yellow dot

▸ 4. put it all together! - look at the power function in recursion.py code

▸ Check the base case first:

▸ if length < 10

▸ Draw a yellow dot.

▸ Otherwise:

▸ draw three smaller broccolis at different angles.

▸ new_x and new_y are the ending coordinates of the line being drawn. We save them because after the first recursive call to
broccoli the turtle won't be in the same place.

https://cs.pomona.edu/classes/cs51a/examples/turtle_recursion.txt

ASSIGNED READINGS AND PRACTICE PROBLEMS

Resources

▸ Textbook: Chapter 16

▸ recursion.py

▸ mystery_recursion.py

▸ turtle_recursion.py

21

Homework
▸ Assignment 5 (ongoing)

Practice Problems
▸ Practice 8 (solutions)

https://runestone.academy/ns/books/published/thinkcspy/IntroRecursion/toctree.html
https://cs.pomona.edu/classes/cs51a/examples/recursion.txt
https://cs.pomona.edu/classes/cs51a/examples/mystery_recursion.txt
https://cs.pomona.edu/classes/cs51a/examples/turtle_recursion.txt
https://cs.pomona.edu/classes/cs51a/problems/practice8.txt
https://cs.pomona.edu/classes/cs51a/problems/practice8-solution.txt

