SEARCH 2

D auchak
CS51A — Spring 2025

11/4/25

Admin

Assignment 8

Assignment 9

Copying a matrix
[
>>> m = [[0,0,0], [0,0,0], [0,0,0]]
>>>m2 = mf:]

>>> m2[0][0] = 1

Any problems?

Search algorithm

Keep track of a list of states that we could visit, we’ll
call it “to_visit”

General idea:
O take a state off the to_visit list
Oif it’s the goal state
= we're done!
if it’s not the goal state
u Add all of the next states to the to_visit list
Crepeat

11/4/25

Search algorithms

add the start state to to_visit

Repeat
take a state off the to_visit list
if it's the goal state
" we're done!

if it's not the goal state
= Add all of the next states to the to_visit list

Two variants: breadth first search (BFS) and depth first search
(DFS) depending on whether we use a stack or a queue for
to_visit. Which is which?

Search algorithms

add the start state to to_visit

Repeat
take a state off the to_visit list
if it's the goal state
" we're done!
if it's not the goal state
= Add all of the next states to the to_visit list

Depth first search (DFS): to_visit is a stack
Breadth first search (BFS): to_visit is a queve

6 7
Implementing the state space Implementing state space
| |
What the “world” (in this case a maze) looks like What the “world” (in this case a maze) looks like
We'll define the world as a collection of discrete states We'll define the world as a collection of discrete states
States are connected if we can get from one state to States are connected if we can get from one state to
another by taking a particular action another by taking a particular action
This is called the “state space” This is called the “state space”
State:
¢ Is this the goal state? (is_goal)
¢ What states are connected to this state? (next_states)
8 9

Search variants implemented

add the start state to to_visit def :f:(ssfaagltf)smte“
return search(start_state, s)

def bfs(start_state):

Repeat
q = Queue
take a state off the to_visit list return search(start_state, q)
if i's the goal state def search(start_state, to_visit):

we're done! to_visit.add(start_state)

if if's not the goal state while not to_visit.is_empty():
Add all of the successive states current = to_visit.remove()
to the fo_visit list . .
if current.is_goal():

return current
else:

for s in current.next_states():

to_visit.add(s)

return None

Tic tac toe

Representing the board

Three pieces of information

(self, size)

.size = size
.current_mark =
-board = [1

for i in range(self.size):
board.append(["_"] * size)

10

11

Tic tac toe

Adding a move
Returns a new TicTacToe state
Need to update all information for the new state

ark(o row, col):
_board = copy.deepcopy(self)
_board.board[row][col] = new_board.current_mark

board.current_nark
new_board. current_mar

new_board. current_mark

return new_board

Tic tac toe

Checking for a win (diagonal only)
1. Upper left to lower right?

def is_diagona
-board[B][0]

12

13

https://cs.pomona.edu/classes/cs51a/examples/tic_tac_toe.txt
https://cs.pomona.edu/classes/cs51a/examples/tic_tac_toe.txt
https://cs.pomona.edu/classes/cs51a/examples/tic_tac_toe.txt

11/4/25

Tic tac toe

Checking for a win (diagonal only)
1. Upper left to lower right
def d a n(
.board[0][0] =:
n F

mark = -board[6][0]

for i in range(
£

.size)
.board[i][i] != mark:
eturn False

14

Tic tac toe

Checking for a win (diagonal only)
2. Upper right to lower left2
s_other_diagonal_.

.board[6] [
return False

mark = -board[6][

15

Tic tac toe

Checking for a win (diagonal only)
2. Upper right to lower left

~board[][
(o
.board[i][

return False

return True

- i] 1= mark:

Tic tac toe

The rest of the code:
is_goal

str__

Running the code

16

17

https://cs.pomona.edu/classes/cs51a/examples/tic_tac_toe.txt
https://cs.pomona.edu/classes/cs51a/examples/tic_tac_toe.txt
https://cs.pomona.edu/classes/cs51a/examples/tic_tac_toe.txt
https://cs.pomona.edu/classes/cs51a/examples/tic_tac_toe.txt

11/4/25

N-queens problem N-queens problem
|) |)
Place N queens on an N by N chess board such that Place N queens on an N by N chess board such that
none of the N queens are attacking any other queen. none of the N queens are attacking any other queen.
Solution(s)2
18 19
N-queens problem N-queens problem
| |
Place N queens on an N by N chess board such that Place N queens on an N by N chess board such that
none of the N queens are attacking any other queen. none of the N queens are attacking any other queen.
How do we solve this with search:
N ||
:::::. m What is a state?
|] What is the start state?
.... ..l
EEHEBE What is the goal2
Solution(s)2 How do we transition from one state to the next?
20 21

11/4/25

Search algorithm Start state
|) |)
add the start state to to_visit
Repeat
take a state off the to_visit list
if it's the goal state s this a goal state?
= we're done!
if it's not the goal state Whai states can | get to from the current state?
= Add all of the next states to the to_visit list
Any problem that we can define these three things
can be plugged into the search algorithm!
22 23
next_states? next_states
| |
Many options
Add a queen anywhere
Add a queen anywhere that doesn’t cause a conflict
Add a queen in the next row that doesn’t cause a
conflict
24 25

11/4/25

next_states next_states
|) |)
Many options
Y P Add a queen in the next row that doesn’t cause a
Add a queen anywhere .
conflict
Add a queen anywhere that doesn’t cause a conflict
Add a queen in the next row that doesn’t cause a
conflict
Where are the options?
26 27
N queens problem Foxes and Chickens
| |
Three foxes and three chickens wish to cross the river. They have a small boat
that will carry up fo two animals. Everyone can navigate the boat. If at any
time the foxes outnumber the chickens on either bank of the river, they will eat
the chickens. Find the smallest number of crossings that will allow everyone
to cross the river safely.
What is the “state” of this problem (it should
capture all possible valid configurations)?
28 29

http://en.wikipedia.org/wiki/Eight_queens_puzzle

11/4/25

Foxes and Chickens Foxes and Chickens
= =
Three foxes and three chickens wish to cross the river. They have a small boat Three foxes and three chickens wish to cross the river. They have a small boat
that will carry up to two animals. Everyone can navigate the boat. If at any that will carry up o two animals. Everyone can navigate the boat. If at any
time the foxes outnumber the chickens on either bank of the river, they will eat time the foxes outnumber the chickens on either bank of the river, they will eat
the chickens. Find the smallest number of crossings that will allow everyone the chickens. Find the smallest number of crossings that will allow everyone
to cross the river safely. to cross the river safely.

FFFCCC B

%
i
¢

§ § FC B FFCC

30 31

e §X
NGO S
B §K

Searching for a solution Searching for a solution
[[

FFFCCC B ~~ FFFCCC B ~~

. o FCCC ~~ B FF
What states can we get to from here? FrCCC BF FRCC BFC

Next states?

32 33

11/4/25

Fox and Chickens Solution Fox and Chickens Solution
|) |)
~~|B FFCC ~~|B FFCC
FFCC | FC FFCC o~ | FC
FF ~~|B FCCC FF ~~|B FCCC
FFF ~~| CCC FFF
F F
FC FC
~~|B FFFCCC ~~|B FFFCCC
How is this solution different than the n-queens problem? Solution is not a state, but a sequence of actions (or a sequence of states)
34 35
Codel One other problem
|] |]
FFFCCC B ~~
FFCCC~~BF FFCC~~BFC ¢ TBFF
FFFCCCB~~ FFCCCB~~F FFFCCCB~~
What would happen if we ran DFS here?
36 37

https://cs.pomona.edu/classes/cs51a/examples/chickens.txt

11/4/25

One other problem One other problem

FCCC ~~ B FF FCCC ~~ B FF
FFCCC ~~ B F FFCC ~~ B FC FFCCC ~~ BF FFCC ~~ B FC

[FFCEcE™™| rrccce~~F FRFCCCB~~ FFCCCB~~F FFFCCC B~~
N\ N\ N N\

Does BFS have this problem?
If we always go left first, will continue forever! ve misp

38 39

One other problem DFS vs. BFS

|l Aif
Why do we use DFS then, and not BFS2

‘ FCCC ~~ BFF
FFCCC~~BF FFCC~~BFC
/‘~\ /\.
FFCCCB~~F FFFCCC B~~
\ AN\

Does BFS have this problem?g No!

40 41

10

11/4/25

DFS vs. BFS DFS vs. BFS
|) |)
m Consider a search problem where each m Consider a search problem where each
state has two states you can reach state has two states you can reach
2] [3] - 2] [3] :
Assume the goal state involves 20 Assume the goal state involves 20
actions, i.e. moving between ~20 states actions, i.e. moving between ~20 states
o] [7] [¢] [7]
How big can the queue get for BFS? At any point, need to remember roughly a “row”
42 43

DFS vs. BFS DFS vs. BFS

| |
Consider a search problem where each Consider a search problem where each
state has two states you can reach state has two states you can reach
Assume the goal state involves 20 Assume the goal state involves 20
actions, i.e. moving between ~20 states actions, i.e. moving between ~20 states

How big does this get? Doubles every level we have to go deeper.
For 20 actions that is 220 = ~1 million states!
44 45

11

11/4/25

DFS vs. BFS DFS vs. BFS
|) |)
m Consider a search problem where each m Consider a search problem where each
state has two states you can reach state has two states you can reach
2] [3] ~ 2] [3] .
Assume the goal state involves 20 Assume the goal state involves 20
actions, i.e. moving between ~20 states actions, i.e. moving between ~20 states
] [7] [¢] [7]
How many states would DFS keep on the stack? Only one path through the tree, roughly 2*20 states
46 47

One other problem DFS avoiding repeats
| |
_ def dfs(state, visited):
note that we've visited this state
visited[str(state)] = True
if state.is_goal():
return [state]
~—~ lse:
FFCCC~~BF FFCC~~BFC ' CCCTTBFF o esult = 11
for s in state.next_states():
check if we've visited a state already
[FFRCECE™S] rrccce~~F FFRCCCB~~ if not(str(s) in visited):
result += dfs(s, visited)
t 1t
If we always go left first, will continue forever! return resu
Solution?
48 49

12

Other search problems

What problems have you seen that could be posed as
search problems?

What is the state?
Start state
Godal state

State-space /transition between states

50

11/4/25

13

