10/30/25

Admin

Assignment 8

SEARCH

David Kauchak
CS51A - Fall 2025

What is Al2 What is Al2
by |
Think like a human Think rationally Think like a human Think rationally
Cognitive Modeling Logic-based Systems Cognitive Modeling Logic-based Systems
Act like a human Act rationally Act like a human Act rationally
Turing Test Rational Agents Turing Test Rational Agents
Next couple of weeks
3 4

10/30/25

Solve the maze!

BiE=Es
= =

Solve the maze!

:

= ﬁﬁ%@ﬂm
Hl.
S-

10/30/25

One approach

What now?

One approach

Three choices

10

One approach

Pick one!

What now?

One approach

Still three options!

11

12

10/30/25

One approach

Still three options!
Which would you explore /pick?

One approach

Most people go down a single path until

they realize that it's wrong

13

14

One approach

Keep exploring

One approach

Keep exploring

15

16

10/30/25

One approach One approach
|) |)
What now? Are we stuck?
No. Red positions are just possible options we haven't explored
17 18
One approach One approach
| |
How do we know Have to be careful and keep track of
not to go straight? where we've been if we can loop
19 20

10/30/25

One approach One approach
= =
|
> EEEENR
Now what? Now what?
21 22

One approach Search problems
| |
=oyb u
A\
|] o >
- N
u
= -
|
What information do we need to
figure out a solution?
23 24

10/30/25

Search problems State space example
| |
Where to start I
Where to finish (goal) S| dow
What the “world” (in this case a maze) looks like
We'll define the world as a collection of discrefe states
States are connected if we can get from one state to
another by taking a particular action
This is called the “state space”
25 26
State space example State space example
| |
\‘
. el ‘ | 1 ‘ I
For a given problem, still could have different state-spaces
How many more states are there?
27 28

10/30/25

State space example

.....

State space example

29

30

State space example

2] U
j g t‘ v Ju U
[| _;:;JIU‘ L I
| .
Now what? o ‘.‘ -E‘LT‘

State space example

31

32

10/30/25

State space example

o0 [| il |
T o

) 5/ ® ww /-

Now what? Fral i)] i)

State space example

33

34

State space example Search algorithm
| |
Keep track of a list of states that we could visit, we'll
call it “to_visit”
i el : M General idea:
take a state off the to_visit list
-;. | ‘ if it's the goal state
" = we're done!
~ ol ‘ s if it's not the goal state
$ie) u Add all of the next states to the to_visit list
Could we have found = | repeat
the exit any other way? . EReA .
i ‘w 2
see |

35

36

10/30/25

- take a state off the to_s

- if it's the goal state
we're donel

How do we start?

- if if's not the goal state
Add all of the next states fo
the to_visit list

- repeat

.s

- take a state off the fo_visit list
- if if's the goal state
we're donel
- if if's not the goal state
Add all of the next states fo
the to_visit list

- repeat

to_visit

1

Add start fo to_visit

37

38

-take a state off the to_visit list

- if s the goal state
we're donel

Is it a goal state?

- if i's not the goal state
Add all of the next states to
the to_visit list

- repeat

- take a state off the to_visit list
- if it's the goal state
we're done!
-[if ¥'s not the goal state
Add all of the next states to
the to_visit list

- repeat

to_visit

39

40

10

10/30/25

to_visit to_visit

- take a state off the to_visit list o take a state off the to_visit list
_if it's the goal state 3 - if it's the goal state 3

we're done! 4 we're done! 4
~if it's not the goal state Is it a goal state? <[if it not the goal state

Add all of the next states to Add all of the next states to

the to_visit list the to_visit list

- repeat - repeat

41 42

- take a state off the to_visit list fovbl . - take a state off the to_visit list
_if it's the goal state 3 - if it's the goal state
we're donel 4 Dead-end. What do we we're donel 4 list keeps track of where
<l it's not the goal state ~if its not the goal state)
do now? 1o go next, Le. the states
Add all of the next states to Add all of the next states to we know about but haven't
the to_visit list the to_visit list explored
~repeat ~repeat

43 44

11

10/30/25

- fiake a state off the fo_visit list
- if it's the goal state
we're donel
- if if's not the goal state
Add all of the next states fo
the to_visit list

- repeat

to_visit

4

Is it a goal state?

- take a state off the fo_visit list
- if if's the goal state
we're donel
-[if iF's nof the goal state
Add all of the next states fo
the to_visit list

- repeat

to_visit

45

46

- [take a state off the to_visit list

- if s the goal state
we're donel
- if i's not the goal state
Add all of the next states to
the to_visit list

- repeat

R a\“
)
ol

Is it a goal state?

el “
oyl

- take a state off the to_visit list
- if it's the goal state
we're done!
-[if ¥'s not the goal state
Add all of the next states to
the to_visit list

- repeat

47

48

12

10/30/25

- fiake a state off the fo_visit list
- if it's the goal state
we're donel
- if if's not the goal state
Add all of the next states fo
the to_visit list

- repeat

to_visit

4

Is it a goal state?

to_visit
- [take a state off the to_visit list

- if it's the goal state 4
we're donel
<if it's not the goal state
Add all of the next states to
the to_visit list

- repeat

49

50

- [take a state off the to_visit list

- if s the goal state
we're donel
- if i's not the goal state
Add all of the next states to
the to_visit list

- repeat

How was the to_visit list

organized in this example,
i.e., what order?

It's a stacklll (LIFO)

sese

- take a state off the to_visit list
- if it's the goal state
we're done!
- if it's not the goal state
Add all of the next states to
the to_visit list

- repeat

What would happen if we

used @ queve?

51

52

13

Search algorithms
S

add the start state to to_visit

Repeat
take a state off the to_visit list

if it's the goal state

" we're done!

if it's not the goal state

= Add all of the next states to the to_visit list

Search algorithms
[

add the start state to to_visit

Repeat
take a state off the to_visit list

if it's the goal state

" we're done!

if it's not the goal state

= Add all of the next states to the to_visit list

Depth first search (DFS): to_visit is a stack
Breadth first search (BFS): to_visit is a queve

53

54

What order will BFS and DFS visit the states assuming
states are added to to_visit left to right?
|]

add the start state to to_visit

Repeat @

take a state off the to_visit list

if it's the goal state

= we're donel
if it's not the goal state

= Add all of the successive states to the to_visit list

Depth first search (DFS): to_visit is a stack
Breadth first search (BFS): to_visit is a queuve

What order will BFS and DFS visit the states?
|]

DFS: 1,4,3,8,7,6,9,2,5

2
Why not 1, 2, 52 2]

Depth first search (DFS): to_visit is a stack
Breadth first search (BFS): to_visit is a queue

55

56

10/30/25

14

10/30/25

What order will BFS and DFS visit the states?
|

DFS: 1,4,3,8,7,6,9,2,5 m

2] [s [4

5] [e] [7]le]
bres 5]

Depth first search (DFS): to_visit is a stack
Breadth first search (BFS): to_visit is a queue

What order will BFS and DFS visit the states?
|)
DFS: 1,4,3,8,7,6,9,2,5 m
2] [3] [4
[¢]
b [°]

Depth first search (DFS): to_visit is a stack
Breadth first search (BFS): to_visit is a queue

57 58
What order will BFS and DFS visit the states? What order will BFS and DFS visit the states?

| |

DFS: 1,4,3,8,7,6,9,2,5 E DFS: 1,4,3,8,7,6,9,2,5 E

[2] BFS: 1,2,3,4,5 [2] [4]
[o] o]
stack
Depth first search (DFS): to_visit is a stack @ Depth first search (DFS): to_visit is a stack @
Breadth first search (BFS): to_visit is a queuve Breadth first search (BFS): to_visit is a queue

59

60

15

10/30/25

Implementing state space
[

What the “world” (in this case a maze) looks like

We'll define the world as a collection of discrefe states
States are connected if we can get from one state to
another by taking a particular action

This is called the “state space”

Implementing state space
[

What the “world” (in this case a maze) looks like
We'll define the world as a collection of discrete states
States are connected if we can get from one state to
another by taking a particular action

This is called the “state space”

State:
* s this the goal state? (is_goal)
What states are connected to this state? (nexi_states)

61 62

Search variants implemented What order would this variant visit the states?

| |
. def dfs(start_state): def search(state):
add the start state to to_visit s = Stack() if state.is_goal():
return search(start_state, s) return state
. else:

Repeat def :f:(s\f:.:;(;tate)' for s in state.next_states(): @

take a state off the to_visit list return search(start_state, q) result = search(s)

if it's the goal state

def search(start_state, to_visit):
= we're done! to_visit.add(start_state)
if ifs not the goal state while not to_visit.is_empty():

= Add all of the successive states current = to_visit.remove()

to the to_visit list . .
if current.is_goal():
return current
else:

to_visit.add(s)

return None

for s in current.next_states():

if result != None:
return result

return None

1,2,5

63

64

16

10/30/25

What order would this variant visit the states?

|)
def search(state):
if state.is_goal(): 1
return state
else:
for s in state.next_states(): [é} [é}
result = search(s)

if result != None:
return result

return None

1,2,53,6,9,7,8

3]
[¢]
5]

What search algorithm is this?

What order would this variant visit the states?

def search(state):
if state.is_goal(): 1
return state
else:
for s in state.next_states(): [é} [é}
result = search(s)

if result != None:
return result

return None

1,2,53,6,9,7,8

3]
o]
9]

DFS!

65

66

One last DFS variant
|

def search(state):
if state.is_goal():
return state
else: else
for s in state.next_states():
esult = searcl
if result != None:
return result

def dfs(state):
if state.is_goal():
return [state]

result = []

result += dfs(s)

return None return result

How is this different?

for s in state.next_states():

One last DFS variant

def search(state): def dfs(state):
if state.is_goal(): if state.is_goal():
return state return [state]
else: else:
for s in state.next_states():
result = searcl
if result != None:
return result

result = []

for s in state.next_states():
result += dfs(s)

return None return result

Returns ALL solutions
found, not just one

67

68

17

Matrices!

69

10/30/25

18

