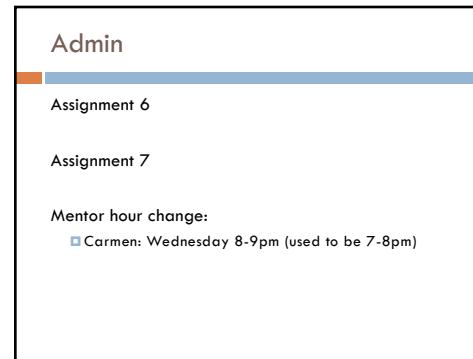
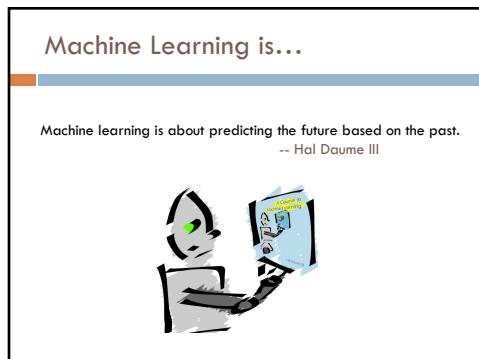


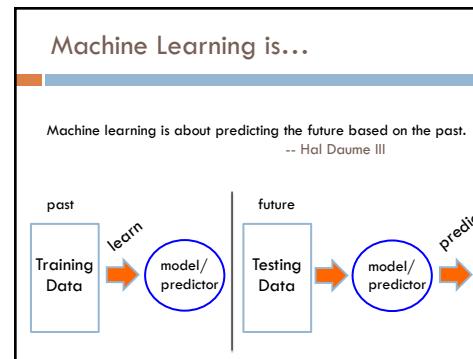
1



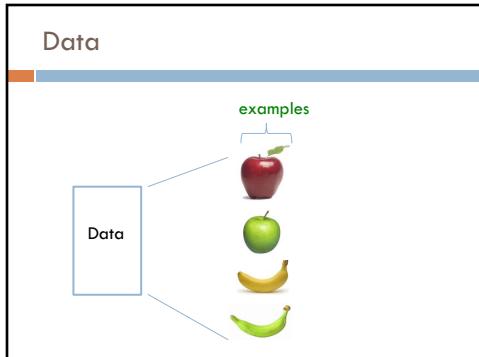
2



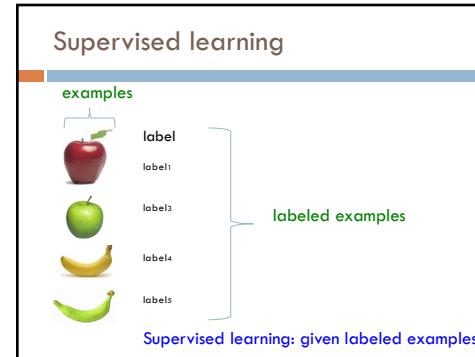
3



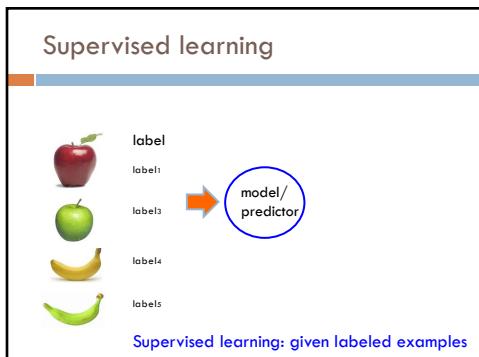
4



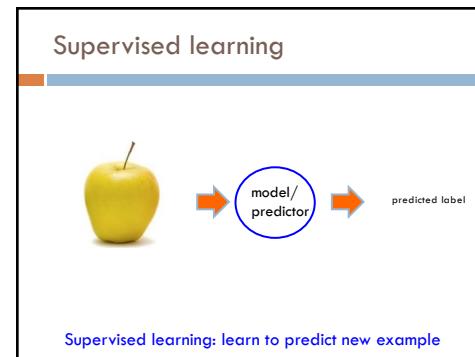
5



6



7



8

Supervised learning: classification

label

apple

apple

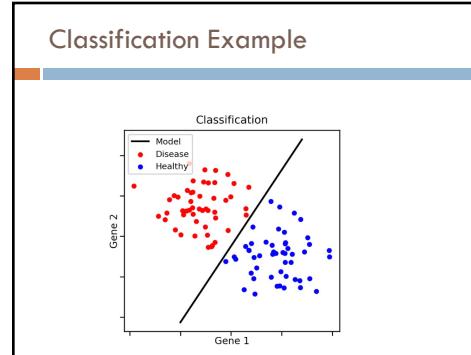
banana

banana

Classification: a finite set of labels

Supervised learning: given labeled examples

9



10

Classification Applications

Face recognition

Character recognition

Spam detection

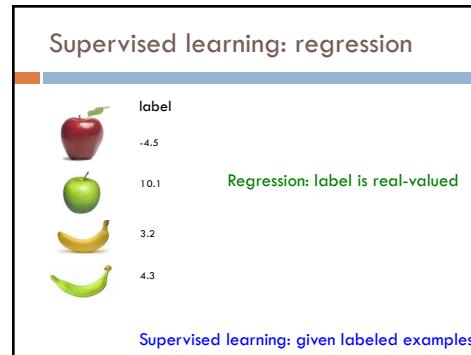
Medical diagnosis: From symptoms to illnesses

Biometrics: Recognition/authentication using physical and/or behavioral characteristics: Face, iris, signature, etc

...

Supervised learning: given labeled examples

11

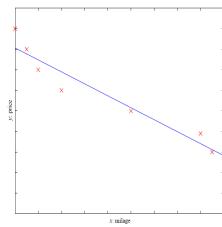


12

Regression Example

Price of a used car

x : car attributes
(e.g. mileage)
 y : price



13

Regression Applications

Economics/Finance: predict the value of a stock

Epidemiology

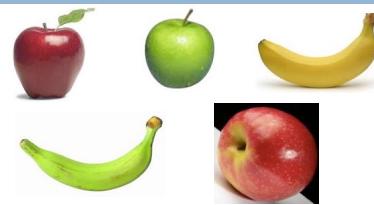
Car/plane navigation: angle of the steering wheel,
acceleration, ...

Temporal trends: weather over time

...

14

Unsupervised learning



Unsupervised learning: given data, i.e. examples, but no labels

18

Unsupervised learning applications

learn clusters/groups without any label

customer segmentation (i.e. grouping)

image compression

bioinformatics: learn motifs

...

19

Reinforcement learning

left, right, straight, left, left, left, straight	GOOD
left, straight, straight, left, right, straight, straight	BAD
left, right, straight, left, left, left, straight	18.5
left, straight, straight, left, right, straight, straight	-3

Given a **sequence** of examples/states and a **reward** after completing that sequence, learn to predict the action to take in for an individual example/state

20

Reinforcement learning example

Backgammon

Given sequences of moves and whether or not the player won at the end, learn to make good moves

21

Other learning variations

What data is available:

- Supervised, unsupervised, reinforcement learning
- semi-supervised, active learning, ...

How are we getting the data:

- online vs. offline learning

Type of model:

- generative vs. discriminative
- parametric vs. non-parametric

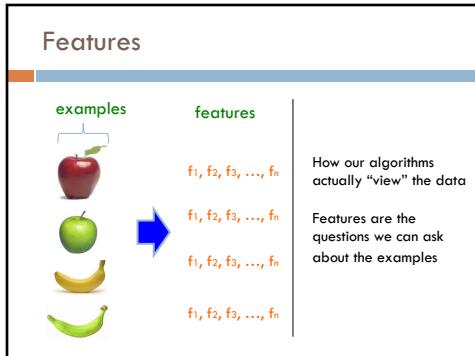
22

Representing examples

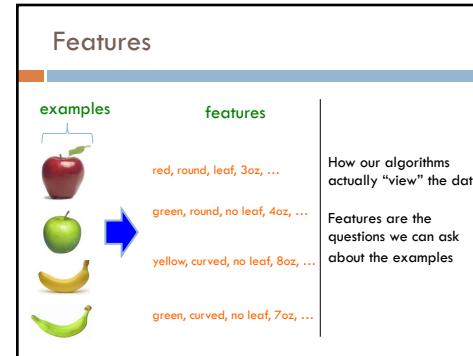
examples

What is an example?
How is it represented?

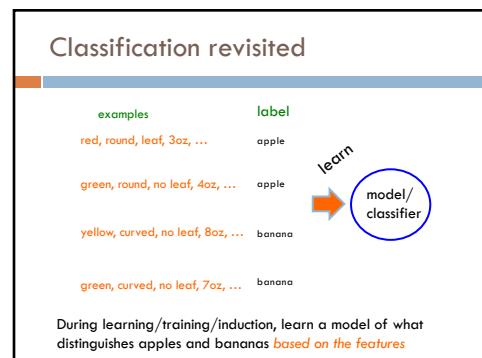
23



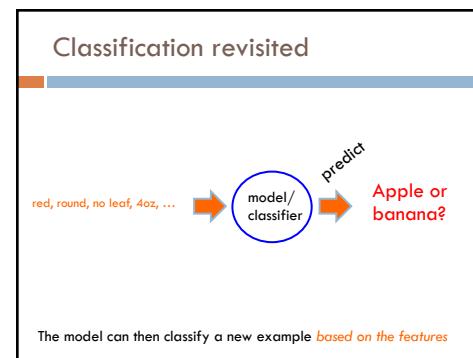
24



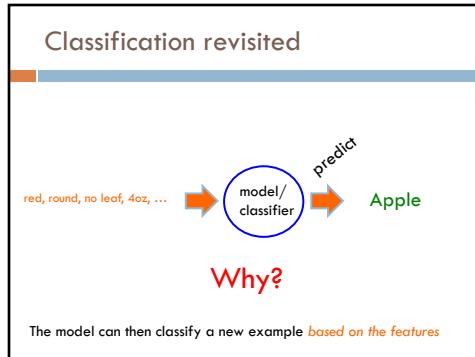
25



26



27



28

Classification revisited

Training data	Test set
examples	label
red, round, leaf, 3oz, ...	apple
green, round, no leaf, 4oz, ...	apple
yellow, curved, no leaf, 4oz, ...	banana
green, curved, no leaf, 5oz, ...	banana
red, round, no leaf, 4oz, ...	?

29

Classification revisited

Training data	Test set
examples	label
red, round, leaf, 3oz, ...	apple
green, round, no leaf, 4oz, ...	apple
yellow, curved, no leaf, 4oz, ...	banana
green, curved, no leaf, 5oz, ...	banana
red, round, no leaf, 4oz, ...	?

Learning is about **generalizing** from the training data

30

Rock, paper, scissors

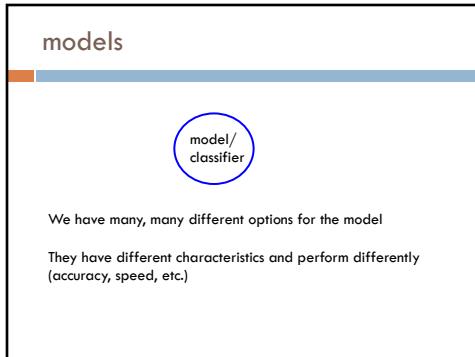
<https://archive.nytimes.com/www.nytimes.com/interactive/science/rock-paper-scissors.html>

VS.

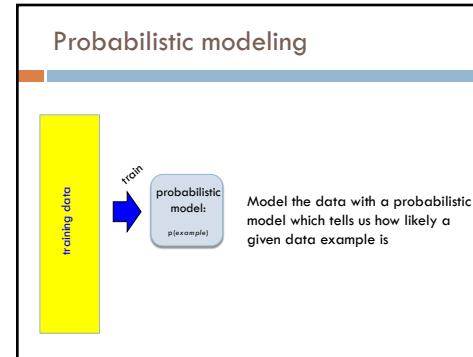
Novice

Veteran

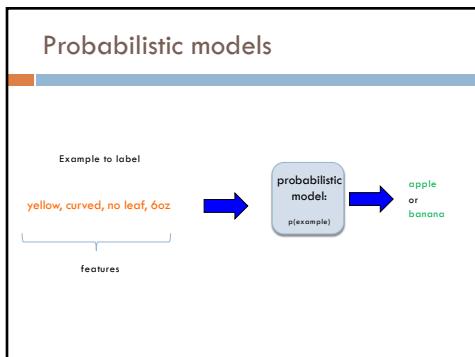
31



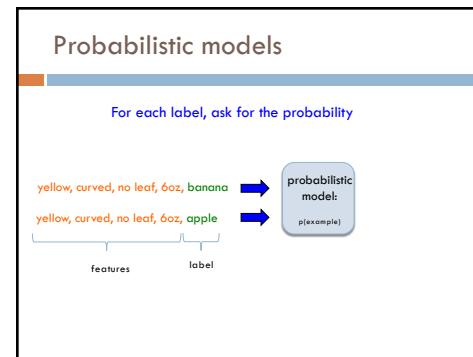
33



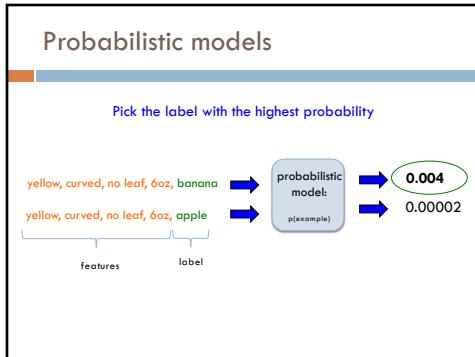
34



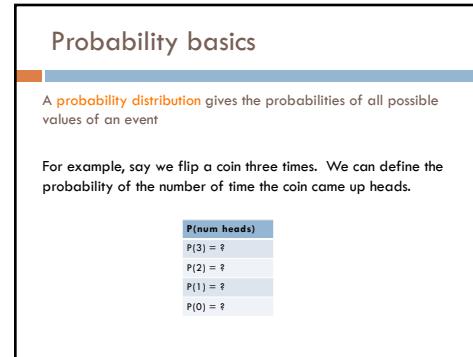
35



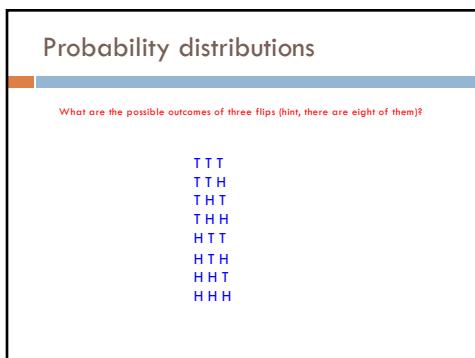
36



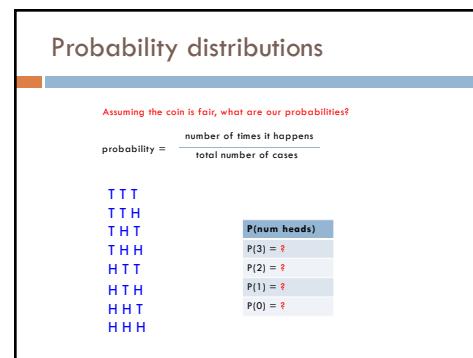
37



38



39



40

Probability distributions

Assuming the coin is fair, what are our probabilities?

$$\text{probability} = \frac{\text{number of times it happens}}{\text{total number of cases}}$$

TTT
TTH
THT
THH
HTT
HTH
HHT
HHH

P(num heads)

P(3) = ?
P(2) = ?
P(1) = ?
P(0) = ?

41

Probability distributions

Assuming the coin is fair, what are our probabilities?

$$\text{probability} = \frac{\text{number of times it happens}}{\text{total number of cases}}$$

TTT
TTH
THT
THH
HTT
HTH
HHT
HHH

P(num heads)

P(3) = 1/8
P(2) = ?
P(1) = ?
P(0) = ?

42

Probability distributions

Assuming the coin is fair, what are our probabilities?

$$\text{probability} = \frac{\text{number of times it happens}}{\text{total number of cases}}$$

TTT
TTH
THT
THH
HTT
HTH
HHT
HHH

P(num heads)

P(3) = 1/8
P(2) = ?
P(1) = ?
P(0) = ?

43

Probability distributions

Assuming the coin is fair, what are our probabilities?

$$\text{probability} = \frac{\text{number of times it happens}}{\text{total number of cases}}$$

TTT
TTH
THT
THH
HTT
HTH
HHT
HHH

P(num heads)

P(3) = 1/8
P(2) = 3/8
P(1) = ?
P(0) = ?

44

Probability distributions

Assuming the coin is fair, what are our probabilities?

$$\text{probability} = \frac{\text{number of times it happens}}{\text{total number of cases}}$$

TTT
TTH
THT
THH
HTT
HTH
HHT
HHH

P(num heads)
P(3) = 1/8
P(2) = 3/8
P(1) = 3/8
P(0) = 1/8

45

Probability distribution

A probability distribution assigns probability values to *all possible values*

Probabilities are between 0 and 1, inclusive

The sum of all probabilities in a distribution must be 1

P(num heads)
P(3) = 1/8
P(2) = 3/8
P(1) = 3/8
P(0) = 1/8

46

Probability distribution

A probability distribution assigns probability values to *all possible values*

Probabilities are between 0 and 1, inclusive

The sum of all probabilities in a distribution must be 1

P
P(3) = 1/2
P(2) = 1/2
P(1) = 1/2
P(0) = 1/2

P
P(3) = -1
P(2) = 2
P(1) = 0
P(0) = 0

47

Some example probability distributions

probability of heads
(distribution options: heads, tails)

probability of passing class
(distribution options: pass, fail)

probability of rain today
(distribution options: rain or no rain)

probability of getting an 'A'
(distribution options: A, B, C, D, F)

48

Conditional probability distributions

Sometimes we may know extra information about the world that may change our probability distribution

- $P(X | Y)$ captures this (read “probability of X given Y ”)
 - Given some information (Y) what does our probability distribution look like
 - Note that this is still just a normal probability distribution

49

Conditional probability example

P(pass 51a)
$P(\text{pass}) = 0.9$
$P(\text{not pass}) = 0.1$

Unconditional probability distribution

50

Conditional probability example

P(pass 51a)
$P(\text{pass}) = 0.9$
$P(\text{not pass}) = 0.1$

P(pass 51a don't study)
$P(\text{pass}) = 0.5$
$P(\text{not pass}) = 0.5$

P(pass 51a do study)
$P(\text{pass}) = 0.95$
$P(\text{not pass}) = 0.05$

Conditional probability distributions

Still probability distributions over passing 51A

51

Conditional probability example

P(rain in LA)
$P(\text{rain}) = 0.05$
$P(\text{no rain}) = 0.95$

Unconditional probability distribution

52

Conditional probability example

P(rain in LA March)		
P(rain) = 0.2		
P(no rain) = 0.8		
Still probability distributions over passing rain in LA		
P(rain in LA)		
P(rain) = 0.05		
P(no rain) = 0.95		
P(rain in LA not March)		
P(pass) = 0.03		
P(not pass) = 0.97		
Conditional probability distributions		

53

Joint distribution

Probability over two events: $P(X, Y)$

Has probabilities for all possible combinations over the two events

S1Pass, EngPass	P(S1Pass, EngPass)
true, true	.88
true, false	.01
false, true	.04
false, false	.07

54

Joint distribution

Still a probability distribution

All questions/probabilities that we might want to ask about these two things can be calculated from the joint distribution

S1Pass, EngPass	P(S1Pass, EngPass)
true, true	.88
true, false	.01
false, true	.04
false, false	.07

What is $P(S1\text{ pass} = \text{true})$?

55

Joint distribution

S1Pass, EngPass	P(S1Pass, EngPass)
true, true	.88
true, false	.01
false, true	.04
false, false	.07

There are two ways that a person can pass S1: they can do it while passing or not passing English

$$P(S1\text{Pass}=\text{true}) = P(\text{true, true}) + P(\text{true, false}) = 0.89$$

56

Relationship between distributions

$$P(X, Y) = P(Y) * P(X|Y)$$

joint distribution unconditional distribution conditional distribution

Can think of it as describing the two events happening in two steps:

The likelihood of X and Y happening:

1. How likely is that Y happened?
2. Given that Y happened, how likely is it that X happened?

57

Relationship between distributions

$$P(51Pass, EngPass) = P(EngPass) * P(51Pass|EngPass)$$

The probability of passing CS51 and English is:

1. Probability of passing English *
2. Probability of passing CS51 **given** that you passed English

58

Relationship between distributions

$$P(51Pass, EngPass) = P(51Pass) * P(EngPass|51Pass)$$

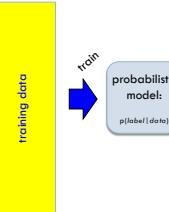
The probability of passing CS51 and English is:

1. Probability of passing CS51 *
2. Probability of passing English **given** that you passed CS51

Can also view it with the other event happening first

59

Back to probabilistic modeling

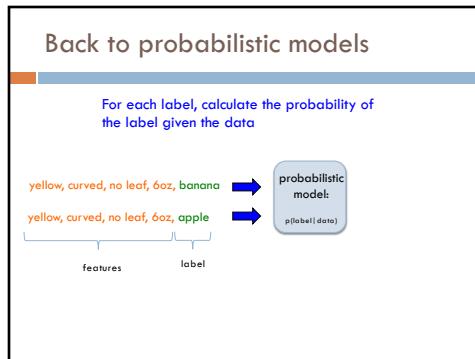


Build a model of the conditional distribution:

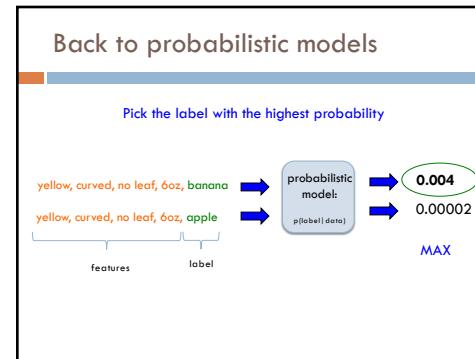
$$P(\text{label} | \text{data})$$

How likely is a label given the data

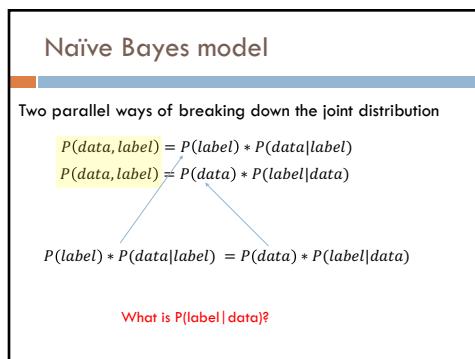
60



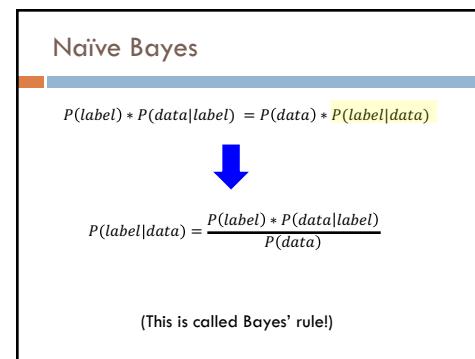
61



62



63



64

Naïve Bayes

$$P(\text{label}|\text{data}) = \frac{P(\text{label}) * P(\text{data}|\text{label})}{P(\text{data})}$$

probabilistic model:
 $p(\text{label}|\text{data})$

MAX

$$\frac{P(\text{positive}) * P(\text{data}|\text{positive})}{P(\text{data})}$$

$$\frac{P(\text{negative}) * P(\text{data}|\text{negative})}{P(\text{data})}$$

65

One observation

$$\frac{P(\text{positive}) * P(\text{data}|\text{positive})}{P(\text{data})}$$

MAX

$$\frac{P(\text{negative}) * P(\text{data}|\text{negative})}{P(\text{data})}$$

For picking the largest $P(\text{data})$ doesn't matter!

66

One observation

$$\frac{P(\text{positive}) * P(\text{data}|\text{positive})}{P(\text{negative}) * P(\text{data}|\text{negative})}$$

MAX

For picking the largest $P(\text{data})$ doesn't matter!

67

A simplifying assumption (for this class)

$$\frac{P(\text{positive}) * P(\text{data}|\text{positive})}{P(\text{negative}) * P(\text{data}|\text{negative})}$$

MAX

If we assume $P(\text{positive}) = P(\text{negative})$ then:

$$\frac{P(\text{data}|\text{positive})}{P(\text{data}|\text{negative})}$$

MAX

68

Naïve Bayes Assumption

$$P(\text{data}|\text{label}) = P(f_1, f_2, \dots, f_n|\text{label}) \\ \approx P(f_1|\text{label}) * P(f_2|\text{label}) * \dots * P(f_n|\text{label})$$

This is generally not true!

However..., it makes our life easier.

This is why the model is called **Naïve Bayes**

69

Naïve Bayes

$$P(f_1|\text{positive}) * P(f_2|\text{positive}) * \dots * P(f_n|\text{positive})$$

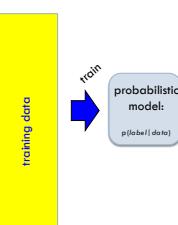
MAX

$$P(f_1|\text{negative}) * P(f_2|\text{negative}) * \dots * P(f_n|\text{negative})$$

Where do these come from?

70

Training Naïve Bayes



71

An aside: $P(\text{heads})$

What is the $P(\text{heads})$ on a fair coin?

0.5

What if you didn't know that, but had a coin to experiment with?

Flip it a bunch of times and count how many times it comes up heads

$$P(\text{heads}) = \frac{\text{number of times heads came up}}{\text{total number of coin tosses}}$$

72

Try it out...

73

$P(\text{feature} | \text{label})$

$$P(\text{heads}) = \frac{\text{number of times heads came up}}{\text{total number of coin tosses}}$$

Can we do the same thing here? What is the probability of a feature given positive, i.e. the probability of a feature occurring in the positive label?

$$P(\text{feature} | \text{positive}) = ?$$

74

$P(\text{feature} | \text{label})$

$$P(\text{heads}) = \frac{\text{number of times heads came up}}{\text{total number of coin tosses}}$$

Can we do the same thing here? What is the probability of a feature given positive, i.e. the probability of a feature occurring in the positive label?

$$P(\text{feature} | \text{positive}) = \frac{\text{number of positive examples with that feature}}{\text{total number of positive examples}}$$

75

Training Naïve Bayes

1. Count how many examples have each label
2. For all examples with a particular label, count how many times each feature occurs
3. Calculate the conditional probabilities of each feature for all labels:

$$P(\text{feature} | \text{label}) = \frac{\text{number of 'label' examples with that feature}}{\text{total number of examples with that label}}$$

76

Classifying with Naïve Bayes

For each label, calculate the product of $p(\text{feature} | \text{label})$ for each label

yellow, curved, no leaf, 6oz \Rightarrow $P(\text{yellow} | \text{banana}) * \dots * P(\text{6oz} | \text{banana})$

$P(\text{yellow} | \text{apple}) * \dots * P(\text{6oz} | \text{apple})$

MAX

77

Naïve Bayes Text Classification

Positive	Negative
I loved it	I hated it
I loved that movie	I hated that movie
I hated that I loved it	I loved that I hated it

Given examples of text in different categories, learn to predict the category of new examples

Sentiment classification: given positive/negative examples of text (sentences), learn to predict whether new text is positive/negative

78

Text classification training

Positive	Negative
I loved it	I hated it
I loved that movie	I hated that movie
I hated that I loved it	I loved that I hated it

We'll assume words just occur once in any given sentence

79

Text classification training

Positive	Negative
I loved it	I hated it
I loved that movie	I hated that movie
I hated that loved it	I loved that hated it

We'll assume words just occur once in any given sentence

80

Training the model	
Positive	Negative
I loved it	I hated it
I loved that movie	I hated that movie
I hated that loved it	I loved that hated it

For each word and each label, learn:
 $p(\text{word} \mid \text{label})$

81

Training the model	
Positive	Negative
I loved it	I hated it
I loved that movie	I hated that movie
I hated that loved it	I loved that hated it

$P(\text{l} \mid \text{positive}) = ?$

$P(\text{word} \mid \text{label}) = \frac{\text{number of times word occurred in "label" examples}}{\text{total number of examples with that label}}$

82

Training the model	
Positive	Negative
I loved it	I hated it
I loved that movie	I hated that movie
I hated that loved it	I loved that hated it

$P(\text{l} \mid \text{positive}) = 3/3 = 1.0$

$P(\text{word} \mid \text{label}) = \frac{\text{number of times word occurred in "label" examples}}{\text{total number of examples with that label}}$

83

Training the model	
Positive	Negative
I loved it	I hated it
I loved that movie	I hated that movie
I hated that loved it	I loved that hated it

$P(\text{l} \mid \text{positive}) = 1.0$

$P(\text{loved} \mid \text{positive}) = ?$

$P(\text{word} \mid \text{label}) = \frac{\text{number of times word occurred in "label" examples}}{\text{total number of examples with that label}}$

84

Training the model	
Positive	Negative
I loved it	I hated it
I loved that movie	I hated that movie
I hated that loved it	I loved that hated it
$P(I \mid \text{positive}) = 1.0$ $P(\text{loved} \mid \text{positive}) = 3/3$	
$P(\text{word} \mid \text{label}) = \frac{\text{number of times word occurred in "label" examples}}{\text{total number of examples with that label}}$	

85

Training the model	
Positive	Negative
I loved it	I hated it
I loved that movie	I hated that movie
I hated that loved it	I loved that hated it
$P(I \mid \text{positive}) = 1.0$ $P(\text{loved} \mid \text{positive}) = 3/3$ $P(\text{hated} \mid \text{positive}) = ?$	
$P(\text{word} \mid \text{label}) = \frac{\text{number of times word occurred in "label" examples}}{\text{total number of examples with that label}}$	

86

Training the model	
Positive	Negative
I loved it	I hated it
I loved that movie	I hated that movie
I hated that loved it	I loved that hated it
$P(I \mid \text{positive}) = 1.0$ $P(\text{loved} \mid \text{positive}) = 2/3$ $P(\text{hated} \mid \text{positive}) = 1/3$...	$P(I \mid \text{negative}) = ?$
$P(\text{word} \mid \text{label}) = \frac{\text{number of times word occurred in "label" examples}}{\text{total number of examples with that label}}$	

87

Training the model	
Positive	Negative
I loved it	I hated it
I loved that movie	I hated that movie
I hated that loved it	I loved that hated it
$P(I \mid \text{positive}) = 1.0$ $P(\text{loved} \mid \text{positive}) = 2/3$ $P(\text{hated} \mid \text{positive}) = 1/3$...	$P(I \mid \text{negative}) = 1.0$
$P(\text{word} \mid \text{label}) = \frac{\text{number of times word occurred in "label" examples}}{\text{total number of examples with that label}}$	

88

Training the model	
Positive	Negative
I loved it	I hated it
I loved that movie	I hated that movie
I hated that loved it	I loved that hated it
$P(I \text{positive}) = 1.0$	$P(I \text{negative}) = 1.0$
$P(\text{loved} \text{positive}) = 2/3$	$P(\text{movie} \text{negative}) = ?$
$P(\text{hated} \text{positive}) = 1/3$	
...	
$P(\text{word} \text{label}) = \frac{\text{number of times word occurred in "label" examples}}{\text{total number of examples with that label}}$	

89

Training the model	
Positive	Negative
I loved it	I hated it
I loved that movie	I hated that movie
I hated that loved it	I loved that hated it
$P(I \text{positive}) = 1.0$	$P(I \text{negative}) = 1.0$
$P(\text{loved} \text{positive}) = 2/3$	$P(\text{movie} \text{negative}) = 1/3$
$P(\text{hated} \text{positive}) = 1/3$...
$P(\text{word} \text{label}) = \frac{\text{number of times word occurred in "label" examples}}{\text{total number of examples with that label}}$	

90

Classifying	
$P(I \text{positive}) = 1.0$	$P(I \text{negative}) = 1.0$
$P(\text{loved} \text{positive}) = 1.0$	
$p(\text{it} \text{positive}) = 2/3$	$p(\text{hated} \text{negative}) = 1.0$
$p(\text{that} \text{positive}) = 2/3$	$p(\text{it} \text{negative}) = 2/3$
$p(\text{movie} \text{positive}) = 1/3$	$p(\text{movie} \text{negative}) = 1/3$
$P(\text{hated} \text{positive}) = 1/3$	$p(\text{loved} \text{negative}) = 1/3$
Notice that each label has its own probability distribution	
$P(\text{loved} \text{positive})$	
$P(\text{loved} \text{positive}) = 2/3$	
$P(\text{no loved} \text{positive}) = 1/3$	

91

Trained model	
$P(I \text{positive}) = 1.0$	$P(I \text{negative}) = 1.0$
$P(\text{loved} \text{positive}) = 2/3$	$p(\text{hated} \text{negative}) = 1.0$
$p(\text{it} \text{positive}) = 2/3$	$p(\text{that} \text{negative}) = 2/3$
$p(\text{that} \text{positive}) = 2/3$	$P(\text{movie} \text{negative}) = 1/3$
$p(\text{movie} \text{positive}) = 1/3$	$p(\text{it} \text{negative}) = 2/3$
$P(\text{hated} \text{positive}) = 1/3$	$p(\text{loved} \text{negative}) = 1/3$

92

How would we classify: "I hated movie"?

Trained model			
$P(I \mid \text{positive})$	= 1.0	$P(I \mid \text{negative})$	= 1.0
$P(\text{loved} \mid \text{positive})$	= 2/3	$P(\text{hated} \mid \text{negative})$	= 1.0
$P(\text{it} \mid \text{positive})$	= 2/3	$P(\text{that} \mid \text{negative})$	= 2/3
$P(\text{that} \mid \text{positive})$	= 2/3	$P(\text{movie} \mid \text{negative})$	= 1/3
$P(\text{movie} \mid \text{positive})$	= 1/3	$P(\text{it} \mid \text{negative})$	= 2/3
$P(\text{hated} \mid \text{positive})$	= 1/3	$P(\text{loved} \mid \text{negative})$	= 1/3
$P(I \mid \text{positive}) * P(\text{hated} \mid \text{positive}) * P(\text{movie} \mid \text{positive}) = 1.0 * 1/3 * 1/3 = 1/9$			
$P(I \mid \text{negative}) * P(\text{hated} \mid \text{negative}) * P(\text{movie} \mid \text{negative}) = 1.0 * 1.0 * 1/3 = 1/3$			

93

Trained model

How would we classify: "I hated the movie"?

94

Trained model

95

Trained model

What are these?

96

Trained model

$P(I \mid \text{positive})$	= 1.0	$P(I \mid \text{negative})$	= 1.0
$P(\text{loved} \mid \text{positive})$	= 2/3	$P(\text{hated} \mid \text{negative})$	= 1.0
$p(\text{it} \mid \text{positive})$	= 2/3	$p(\text{that} \mid \text{negative})$	= 2/3
$p(\text{that} \mid \text{positive})$	= 2/3	$P(\text{movie} \mid \text{negative})$	= 1/3
$p(\text{movie} \mid \text{positive})$	= 1/3	$p(\text{it} \mid \text{negative})$	= 2/3
$P(\text{hated} \mid \text{positive})$	= 1/3	$p(\text{loved} \mid \text{negative})$	= 1/3

$$P(I \mid \text{positive}) * P(\text{hated} \mid \text{positive}) * P(\text{the} \mid \text{positive}) * P(\text{movie} \mid \text{positive}) =$$

$$P(I \mid \text{negative}) * P(\text{hated} \mid \text{negative}) * P(\text{the} \mid \text{negative}) * P(\text{movie} \mid \text{negative}) =$$

0. Is this a problem?

Trained model

$P(I \mid \text{positive})$	= 1.0	$P(I \mid \text{negative})$	= 1.0
$P(\text{loved} \mid \text{positive})$	= 2/3	$P(\text{hated} \mid \text{negative})$	= 1.0
$p(\text{it} \mid \text{positive})$	= 2/3	$p(\text{that} \mid \text{negative})$	= 2/3
$p(\text{that} \mid \text{positive})$	= 2/3	$P(\text{movie} \mid \text{negative})$	= 1/3
$p(\text{movie} \mid \text{positive})$	= 1/3	$p(\text{it} \mid \text{negative})$	= 2/3
$P(\text{hated} \mid \text{positive})$	= 1/3	$p(\text{loved} \mid \text{negative})$	= 1/3

$$P(I \mid \text{positive}) * P(\text{hated} \mid \text{positive}) * P(\text{the} \mid \text{positive}) * P(\text{movie} \mid \text{positive}) =$$

$$P(I \mid \text{negative}) * P(\text{hated} \mid \text{negative}) * P(\text{the} \mid \text{negative}) * P(\text{movie} \mid \text{negative}) =$$

Yes. They make the entire product go to 0 !

97

98

Trained model

$P(I \mid \text{positive})$	= 1.0	$P(I \mid \text{negative})$	= 1.0
$P(\text{loved} \mid \text{positive})$	= 2/3	$P(\text{hated} \mid \text{negative})$	= 1.0
$p(\text{it} \mid \text{positive})$	= 2/3	$p(\text{that} \mid \text{negative})$	= 2/3
$p(\text{that} \mid \text{positive})$	= 2/3	$P(\text{movie} \mid \text{negative})$	= 1/3
$p(\text{movie} \mid \text{positive})$	= 1/3	$p(\text{it} \mid \text{negative})$	= 2/3
$P(\text{hated} \mid \text{positive})$	= 1/3	$p(\text{loved} \mid \text{negative})$	= 1/3

$$P(I \mid \text{positive}) * P(\text{hated} \mid \text{positive}) * P(\text{the} \mid \text{positive}) * P(\text{movie} \mid \text{positive}) =$$

$$P(I \mid \text{negative}) * P(\text{hated} \mid \text{negative}) * P(\text{the} \mid \text{negative}) * P(\text{movie} \mid \text{negative}) =$$

Our solution: assume any unseen word has a small, fixed probability, e.g. in this example 1/10

Trained model

$P(I \mid \text{positive})$	= 1.0	$P(I \mid \text{negative})$	= 1.0
$P(\text{loved} \mid \text{positive})$	= 2/3	$P(\text{hated} \mid \text{negative})$	= 1.0
$p(\text{it} \mid \text{positive})$	= 2/3	$p(\text{that} \mid \text{negative})$	= 2/3
$p(\text{that} \mid \text{positive})$	= 2/3	$P(\text{movie} \mid \text{negative})$	= 1/3
$p(\text{movie} \mid \text{positive})$	= 1/3	$p(\text{it} \mid \text{negative})$	= 2/3
$P(\text{hated} \mid \text{positive})$	= 1/3	$p(\text{loved} \mid \text{negative})$	= 1/3

$$P(I \mid \text{positive}) * P(\text{hated} \mid \text{positive}) * P(\text{the} \mid \text{positive}) * P(\text{movie} \mid \text{positive}) = 1/90$$

$$P(I \mid \text{negative}) * P(\text{hated} \mid \text{negative}) * P(\text{the} \mid \text{negative}) * P(\text{movie} \mid \text{negative}) = 1/30$$

Our solution: assume any unseen word has a small, fixed probability, e.g. in this example 1/10

99

100

Full disclaimer

I've fudged a few things on the Naive Bayes model for simplicity

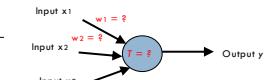
Our approach is very close, but it takes a few liberties that aren't technically correct, but it will work just fine
 ☺

If you're curious, I'd be happy to talk to you offline

101

Training neural networks

X ₁	X ₂	X ₃	X ₁ and X ₂
0	0	0	1
0	1	0	0
1	0	0	1
1	1	0	0
0	0	1	1
0	1	1	1
1	0	1	1
1	1	1	0



102