CS51A - Assignment 8
Movie Hangman

Due: Sunday, November 2nd at 11:59pm

ﬁll g

e _._. -5_‘ ..-_- :
_-"L_"—'_': :':J-n' .'%{ i :I.-"_.-'ll .

For this assignment, you will be re-implementing hangman using an object-oriented approach (i.e.,
using a class to keep track of the state of the game). You are allowed (and should) reuse code
where appropriate from your original hangman version. The point of this is not to rewrite that
code, but to view the problem from a different perspective.

Starter

Like many of the previous assignments, this assignment also has a starter code that contains two
things:

e The movie database from Assignment 4. It’s the same one, but we wanted to save you the
hassle of copying it over (or re-downloading it).



e A starter file called assign8.py that has some initial code to get you started.

Create a directory called assignment8 and put the contents of the starter file in that directory (see
Assignemnt 4 for more detailed instructions on how to extract a starter if you can’t remember).

http://www.cs.pomona.edu/classes/csbla/assignments/assign8-starter.zip

Put your name(s), etc. at the top of the file in comments.

Warmup

Before we dive into hangman, we’re first going to practice writing a simpler class. In your .py
file above the hangman code (but below the imports) create a class called LabeledExample that
represents a labeled text example (like from the last assignment). The class should have the
following methods:

A constructor that takes two arguments in this order: a string named line representing a
line of text and a boolean indicating whether it is a positive example. If the boolean is True
then the example is positive.

- is_positive, which takes zero arguments and returns a boolean indicating whether the ex-
ample is positive or not.

- lowercase, which takes zero arguments and changes the example to be lowercased. It does
not return anything.

- get_words, which takes zero arguments and returns a 1ist of the words in the example (words
are determined by splitting the text up based on whitespace and don’t necessarily have to be
unique).

- contains_word. The method should take a word as input and return a boolean indicating
whether or not that word exists in the text of the example.

Hint: the in operator can be used to see if a value occurs in a list of things. For example:

>>> 1 in [1, 2, 3, 4]
True

- __str__. Returns the string representation of the example, which should be the text followed
by a tab, followed by either “positive” or “negative”.

Here is an example of the class being used:



>>> 11 = LabeledExample("This is great", True)
>>> 12 = LabeledExample("This is bad", False)
>>> 11.is_positive()

True

>>> 12.get_words ()

[’This’, ’is’, ’bad’]

>>> 12.lowercase ()

>>> 12.get_words()

[’this’, ’is’, ’bad’]

>>> print(11)

This is great positive

>>> print(12)

this is bad negative

>>> 12.contains_word("bad")

True

>>> 11.contains_word("bad")

False

When designing any class, think about what data you need to store and how you’re going to store
it (specifically, what instance variables you're going to use).

Hangman revisited

For the rest of the assignment, we’re going to be reimplementing hangman to use an object-oriented
approach. Specifically, we’re going to keep track of all of the game information in a class called
Hangman. Before you start this part of the assignment, it’s worth spending 5-10 minutes quickly
reviewing the specifications for Assignment 4 and your solution.

I’'ve included some initial code to get you started in the starter file. Your class must contain:

e At least the following instance variables:

— self.movie a string representing the title of the movie.

— self.current a list of strings representing the current state of the game. The list will
have one entry for each letter in the movie and will start out as all dashes. As the game
is played, the dashes will get replaced by letters from the movie as the user guesses
letters correctly.

— self.guessed a list of all the letters guessed so far. It will start out empty.

You may need additional instance variables and should feel free to add more. Do make sure
that you only add instance variables in cases where you need to share information across
methods. If the variable is only used inside one method it should be a local varial (i.e., no
self.).



A constructor that takes the movie title as input.

A method current_state_to_string which takes zero arguments and returns a string repre-
sentation of the current state of the game (this is similar to 1ist_to_string from our original
implementation).

A method guess which takes a letter (as a string) as input and updates the state of the
game as if the letter was guessed. Specifically, it should update the guessed letters and the
current state of the game appropriately. You can either write this as a single method or as
multiple methods. This method will likely have code from insert_letter and some from
play_hangman from your original implementation.

A method has_won that returns a boolean indicating whether or not the game has been won.

A __str__method (already provided). This method relies on self.guessed being populated
with the guessed letters correctly and on current_state_to_string. One difference between
this implementation and the one from Assignment 4 is that we will not be printing out the
guessed letters in a “pretty” way. Instead, we’ll simply print it out in list form. Note, however,
that it should still be in alphabetical order, so you’ll need to make sure to keep the list sorted
alphabetically.

To get a better feeling for how the class will be used, I've also provided a new version of the
play_hangman function that uses the class above. Take a look at this function and make sure you
understand how it works and how it relies on the different methods of the Hangman class.

Extra credit

To keep things simple, we justed printed out the guessed letters as a list. In our original version,
we printed out a nicer version that didn’t have the brackets and single quotes. For 1 point of extra
credit, change the __str__ method to return the guessed letters like our original version. You’ll
likely need to write a helper method to help you with this.

When you’re done

Make sure that your program is properly commented:

You should have comments at the very beginning of the file stating your name, course, as-
signment number and the date.

Each function should have an appropriate docstring.

Each class should also have a docstring (right after the class definition) give a high-level
description of the class.

Include other miscellaneous comments to make things clear.



In addition, make sure that you’ve used good style. This includes:

- Following naming conventions, e.g. all variables and functions should be lowercase.

Using good variable names.

Proper use of whitespace, including indenting and use of blank lines to separate chunks of
code that belong together.

- Make sure that none of the lines are too long.

Submit your assign8.py file and ethics reading (in pdf format) online using the courses submission
mechanism.

Ethics

Creating deepfakes is becoming easier and the results are more convincing. Read the article found
in the starter (deepfakes.pdf), summarize it, and describe potential positive and negative uses of
such technology.

Grading

points

ot

Warmup

constructor
current_state_to_string
guess

has_won

Comments, style
Ethics
extra credit

’ total

WM O NN

[\
—_
—~
_l_
—_
~—




BIRDUATCHING 1S HARD,

]
THEYRE ALL LAY TOO
SMALL AND FAR ALJAY.

3

THAT HALK 15 OVER
AMILE UP! HOU DID
YOU EVEN SPOT IT?

/

http://xked.com/1826/




