SEARCH

David Kauchak
CS51A —Fall 2019

11/6/19

Admin

Assignment 8

What is Al2

Think like a human
Cognitive Modeling

Think rationally
Logic-based Systems

Act like a human Act rationally
Turing Test Rational Agents

Next couple of weeks

Solve the mazel

L

|
>

11/6/19

Solve the mazel

e

[

L —

One approach

What now?

Solve the maze!

ol 1 0 W <HEE N

[|
o S—

L —

Solve the maze!

How did you figure it out?

11/6/19

[
>HEHE

w [|
.—

1

Still three options!

Which would you explore/pick?

One approach One approach
fr [
s s
|- C
- HN - HNl
H |
Pick one!
Three choices
What now?
One approach One approach
fr [

|m
> HE

w |
.—

1

Most people go down a single path until

they realize that it’s wrong

11/6/19

One approach

One approach

fr [
s s
|- C
- HN - HNl
H |
B EE B
| EEEEN
Keep exploring Keep exploring
One approach One approach
fr [
s s
| [
- BN —-> BNl
u |
EE BN EEE N
EEN ‘l1 EEEEN
What now? Are we stuck?

No. Red positions are just possible options we haven’t explored

11/6/19

One approach

LLLLIE

How do we know

not to go left?

One approach

Have to be careful and keep track of

where we've been if we can loop

One approach

[
>HEHE

EEE N
LLLLIE

Now what?

One approach

Now what?

11/6/19

Where to start

Where to finish (goal)

What the “world” (in this case a maze) looks like
We'll define the world as a collection of discrete states

States are connected if we can get from one state to
another by taking a particular action

This is called the “state space”

One approach Search problems
= =
'.5"8 4
sl R |
u ’ -
. ‘
|
- -
|
What information do we need to
figure out a solution?
Search problems State space example
= =

—
ﬁiﬂ[‘
N — £ !
».FTV_TL .m <gu |

11/6/19

State space example

l@)ﬁ

ERS

State space example
[

Eﬂ)iﬂ

e =

For a given problem, still could have different state-spaces

How many more states are there?

State space example

State space example
[

e A

11/6/19

State space example
o

State space example

State space example
e
Rl *_ﬁ:’ =
) T

Now what?

State space example

| e.;-.ssi i

Now what?

11/6/19

State space example

Jeaped ve®

%
LT g

o .
Could we have found . Fael = Add all of the next states to the to_visit list
ould we have foun y—|
the exit any other way? *;F.:..il ;. -1 repeat
L
e L Soe,
0 ® 1
s

Search algorithm

Keep track of a list of states that we could visit, we'll
call it “to_visit”

General idea:
take a state off the to_visit list

if it's the goal state
u we're donel!
if it's not the goal state

- take a state off the to_visit list
- if it's the goal state
we’'re done!
- if it's not the goal state
Add all of the next states to
the to_visit list
- repeat

How do we start?

- take a state off the to_visit list
- if it’s the goal state

- if it’s not the goal state

e e ' +e® e
% x" LR
+ + L
~en b 1| e d
to_visit *E?j“?'\ :‘?L—"I J

we're done!
Add start to to_visit

Add all of the next states to
the to_visit list

- repeat

11/6/19

i i

g | AR

r 4

-itake a state off the to_visit list Loyt
- if it’s the goal state
we're done!
- if it's not the goal state
Add all of the next states to
the to_visit list
- repeat

Is it a goal state?

- take a state off the to_visit list
- if it’s the goal state
we're done!
- if it's not the goal state
Add all of the next states to
the to_visit list
- repeat

,;’_T;T

LA Ll

‘ +

to_visit
2

3
4

e idl

hdod]

to_visit
- take a state off the to_visit list —
- if it’s the goal state 3
4

we’'re done!
- if it’s not the goal state
Add all of the next states to
the to_visit list
- repeat

e g sy
;@f_ ‘ﬂ;{ BL_
b/
‘;@ .\.\.LL,

Is it a goal state?

- take a state off the to_visit list
- if it’s the goal state
we're done!
- if it’s not the goal state
Add all of the next states to
the to_visit list
- repeat

to_visit

10

11/6/19

- take a state off the to_visit list
- if it’s the goal state
we're done!
-if it's not the goal state
Add all of the next states to
the to_visit list
- repeat

’:’_T;T

to_visit

So st

3
4

Dead-end. What do we
do now?

- take a state off the to_visit list
- if it’s the goal state
we're done!
- if it's not the goal state
Add all of the next states to
the to_visit list
- repeat

list keeps track of where
to go next, i.e. the states
we know about but haven't
explored

- take a state off the to_visit list
- if it’s the goal state
we’'re done!
- if it’s not the goal state
Add all of the next states to
the to_visit list
- repeat

Is it a goal state?

- take a state off the to_visit list
- if it’s the goal state
we're done!
- if it’s not the goal state
Add all of the next states to
the to_visit list
- repeat

to_visit

11

11/6/19

- take a state off the to_visit list
- if it’s the goal state
we're done!
- if it’s not the goal state
Add all of the next states to
the to_visit list

’:’_T;T

o

T

to_visit

6
4

Is it a goal state?

- take a state off the to_visit list
- if it’s the goal state
we're done!
- if it's not the goal state
Add all of the next states to
the to_visit list

- repeat - repeat
=l =l
o .
f ¥ G “
= T I 4 ¥ B I 4
Joages % | L= ol e %17)

- take a state off the to_visit list
- if it’s the goal state
we’'re done!
- if it’s not the goal state
Add all of the next states to
the to_visit list
- repeat

Is it a goal state?

- take a state off the to_visit list
- if it’s the goal state
we're done!
- if it’s not the goal state
Add all of the next states to
the to_visit list
- repeat

to_visit

4

12

11/6/19

- take a state off the to_visit list
- if it’s the goal state

we're done!
- if it’s not the goal state

Add all of the next states to

e 0
ek

to_visit

4

How was the to_visit list

organized in this example,
i.e., what order?

the to_visit list

- repeat It's a stack!l! (LIFO)

to_visit

4

-'take a state off the to_visit list
- if it’s the goal state
we're done!
- if it’s not the goal state
Add all of the next states to
the to_visit list
- repeat

What would happen if we
used a queue?

Search algorithms
[

add the start state to to_visit

Repeat
take a state off the to_visit list
if it's the goal state
= we're done!

if it's not the goal state
= Add all of the next states to the to_visit list

Search algorithms
[

add the start state to to_visit

Repeat
take a state off the to_visit list
if it’s the goal state
= we're done!
if it's not the goal state
= Add all of the next states to the to_visit list

Depth first search (DFS): to_visit is a stack
Breadth first search (BFS): to_visit is a queue

13

11/6/19

What order will BFS and DFS visit the states assuming
states are added to to_visit left to right?
[

add the start state to to_visit | 1 I

take a state off the to_visit list
[¢]

if it's the goal state
= we're done!
if it's not the goal state

= Add all of the successive states to the to_visit list

Depth first search (DFS): to_visit is a stack |E|
Breadth first search (BFS): to_visit is a queue

What order will BFS and DFS visit the states?
|
DFS: 1,4,3,8,7,6,9,2,5 III
2 3 4
Why not 1, 2, 52 I:l I'—‘I
[¢]
Depth first search (DFS): to_visit is a stack |E|
Breadth first search (BFS): to_visit is a queue

What order will BFS and DFS visit the states?

DFS: 1,4,3,8,7,6,9,2,5 EI

EIEI

[e] [[e]
s [#]

Depth first search (DFS): to_visit is a stack
Breadth first search (BFS): to_visit is a queue

What order will BFS and DFS visit the states?
|
DFS: 1,4,3,8,7,6,9,2,5 m
] [3
[¢]
e [¢]

Depth first search (DFS): to_visit is a stack
Breadth first search (BFS): to_visit is a queue

14

11/6/19

What order will BFS and DFS visit the states?

DFS: 1,4,3,8,7,6,9,2,5 m

EIEI

B[]]
o

Depth first search (DFS): to_visit is a stack |E|
Breadth first search (BFS): to_visit is a queue

|
DFS: 1,4,3,8,7,6,9,2,5
BFS: 1,2,3,4,5

Depth first search (DFS): to_visit is a stack
Breadth first search (BFS): to_visit is a queue

What order will BFS and DFS visit the states?

[]
E] [

B[] EH
[¢]

Search variants implemented
[

def dfs(start_state):
s = Stack()
return search(start_state, s)

add the start state to to_visit

def bfs(start_state):
Repeat a = QueveD
take a state off the to_visit list return search(start_state, q)
P,
if it's the goal state def search(start_state, to_visit):

= we're done! to_visit.add(start_state)
if it's not the goal state

= Add all of the successive states
to the to_visit list

while not to_visit.is_empty():
current = to_visit.remove()

if current.is_goal():
return current
else:
for s in current.next_states():
to_visit.add(s)

return None

def search(state):
if state.is_goal():
return state
else:
for s in state.next_states():
result = search(s)
if result != None:
return result

return None

1,2,5

What order would this variant visit the states?

[]
] [

B[] EH
[¢]

15

11/6/19

def search(state):
if state.is_goal():
return state
else:
for s in state.next_states():
result = search(s)
if result != None:
return result

return None
1,2,53,6,9,7,8

What search algorithm is this2

What order would this variant visit the states?

[]
EIEI

[[
[#]

What order would this variant visit the states?
|

def search(state):

if state.is_goal(): [3]
return state

for s in state.next_states():
result = search(s)
if result != None:
return result

return None

1,2,53,6,9,7,8

[¢]
DFS!

[EE

16

