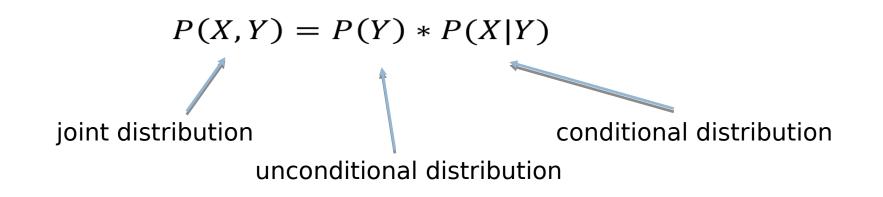
NAÏVE BAYES

David Kauchak, Joseph C. Osborn CS 51A – Fall 2019

Relationship between distributions

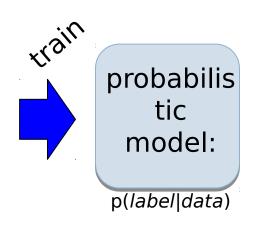


Can think of it as describing the two events happening in two steps:

The likelihood of X and Y happening:

- 1. How likely it is that Y happened?
- 2. Given that Y happened, how likely is it that X happened?

Back to probabilistic modeling



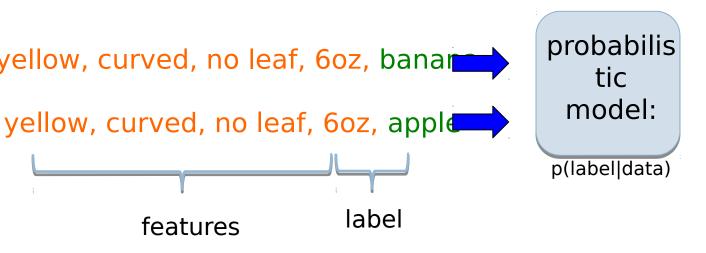
Build a model of the conditional distribution:

P(label | data)

How likely is a label given the data

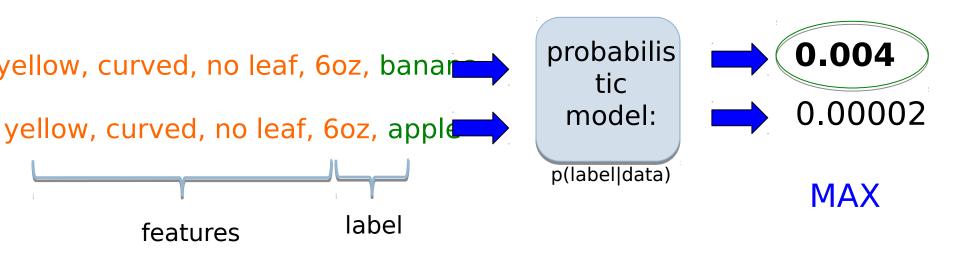
Back to probabilistic models

For each label, calculate the probability of the label given the data



Back to probabilistic models

Pick the label with the highest probability



Naïve Bayes model

Two parallel ways of breaking down the joint distribution

P(data, label) = P(label) * P(data|label)

 $\frac{P(data, label)}{P(data) * P(label|data)}$

P(label) * P(data|label) = P(data) * P(label|data)

What is P(label|data)?

Naïve Bayes

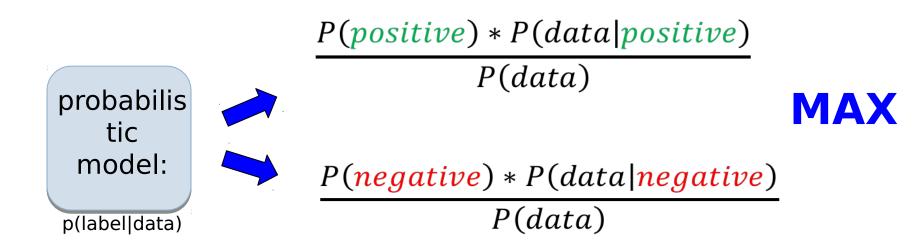
 $P(label) * P(data|label) = P(data) * \frac{P(label|data)}{P(label|data)}$

$P(label|data) = \frac{P(label) * P(data|label)}{P(data)}$

(This is called Bayes' rule!)

Naïve Bayes

$$P(label|data) = \frac{P(label) * P(data|label)}{P(data)}$$



One observation

$\frac{P(positive) * P(data|positive)}{P(data)}$

$\frac{P(negative) * P(data | negative)}{P(data)}$

For picking the largest P(data) doesn't matter!

One observation

P(positive) * P(data|positive) MAX P(negative) * P(data|negative)

For picking the largest P(data) doesn't matter!

A simplifying assumption (for this class)

$\begin{array}{l} P(positive) * P(data|positive) \\ & MAX \\ P(negative) * P(data|negative) \end{array}$

If we assume P(positive) = P(negative) then:

P(data|positive) MAX P(data|negative)

P(data|label)

 $\underline{P}(data|label) = P(f_1, f_2, \dots, f_n|label)$

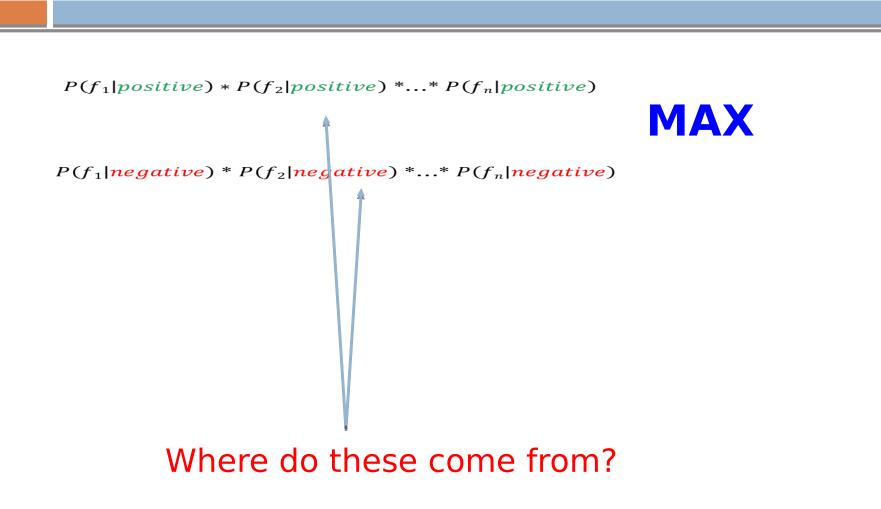
$$\stackrel{\approx}{*} P(f_1 | label) * \\ P(f_2 | label) * \\ \vdots \vdots \\ P(f_n | label)$$

This is generally not true!

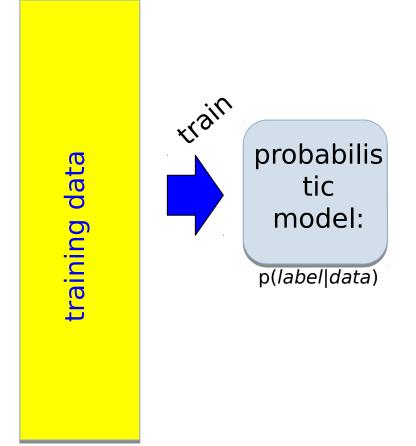
However..., it makes our life easier.

This is why the model is called Naïve Bayes

Naïve Bayes



Training Naïve Bayes



An aside: P(heads)

What is the P(heads) on a fair coin? 0.5

What if you didn't know that, but had a coin to experiment with?

 $P(heads) = \frac{number \ of \ times \ heads \ came \ up}{total \ number \ of \ coin \ tosses}$

Try it out...

P(feature|label)

 $P(heads) = \frac{number of times heads came up}{total number of coin tosses}$

Can we do the same thing here? What is the probability of a feature given positive, i.e. the probability of a feature occurring in in the positive label?

P(feature | positive) = ?

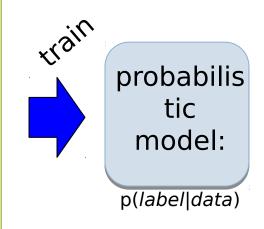
P(feature|label)

 $P(heads) = \frac{number of times heads came up}{total number of coin tosses}$

Can we do the same thing here? What is the probability of a feature given positive, i.e. the probability of a feature occurring in in the positive label?

 $P(feature|positive) = \frac{number of \ positive \ examples \ with that \ feature}{total \ number \ of \ positive \ examples}$

Training Naïve Bayes



training data

- 1. Count how many examples have each label
- 2. For all examples with a particular label, count how many times each feature occurs
- 3. Calculate the conditional probabilities of each feature for all labels:

 $P(feature|label) = \frac{number\ of}{total\ mur}$

= number of ``label''examples with that feature total number of examples with that label

Classifying with Naïve Bayes

For each label, calculate the product of p(feature|label) for each label

ellow, curved, no leaf, 6oz P(yellow|banana)*...*P(6oz|banana) MAX P(yellow|apple)*...*P(6oz|apple)

Naïve Bayes Text Classification

Positive

I loved it I loved that movie I hated that I loved it

Negative

I hated it I hated that movie I loved that I hated it

Given examples of text in different categories, learn to predict the category of new examples

Sentiment classification: given positive/negative examples of text (sentences), learn to predict whether new text is positive/negative

Text classification training

Positive

I loved it I loved that movie I hated that I loved it Negative

I hated it I hated that movie I loved that I hated it

We'll assume words just occur once in any given sentence

Text classification training

Positive

I loved it I loved that movie I hated that loved it Negative

I hated it I hated that movie I loved that hated it

We'll assume words just occur once in any given sentence

Positive

I loved it I loved that movie I hated that loved it Negative

I hated it I hated that movie I loved that hated it

For each <u>word</u> and each <u>label</u>, learn:

p(word | label)

Positive

I loved it I loved that movie I hated that loved it Negative

I hated it I hated that movie I loved that hated it

P(I | positive) = ?

 $P(word|label) = \frac{number \ of \ times \ word \ occured \ in \ "label" \ examples}{total \ number \ of \ examples \ with \ that \ label}$

Positive

I loved it I loved that movie I hated that loved it

Negative

I hated it I hated that movie I loved that hated it

P(I | positive) = 3/3 = 1.0

 $P(word|label) = \frac{number \ of \ times \ word \ occured \ in \ "label" \ examples}{total \ number \ of \ examples \ with \ that \ label}$

Positive

I loved it I loved that movie I hated that loved it Negative

I hated it I hated that movie I loved that hated it

 $\begin{array}{ll} P(I \mid positive) &= 1.0 \\ P(loved \mid positive) &= ? \end{array}$

 $P(word | label) = \frac{number \ of \ times \ word \ occured \ in \ "label" \ examples}{total \ number \ of \ examples \ with \ that \ label}$

Positive

I loved it I loved that movie I hated that loved it Negative

I hated it I hated that movie I loved that hated it

 $P(I \mid positive) = 1.0$ P(loved | positive) = 3/3

 $P(word | label) = \frac{number of times word occured in "label" examples}{total number of examples with that label}$

Positive

I loved it I loved that movie I hated that loved it

Negative

I hated it I hated that movie I loved that hated it

 $\begin{array}{ll} \mathsf{P}(\mathsf{I} \mid \mathsf{positive}) &= 1.0 \\ \mathsf{P}(\mathsf{loved} \mid \mathsf{positive}) &= 3/3 \\ \mathsf{P}(\mathsf{hated} \mid \mathsf{positive}) &= ? \end{array}$

 $P(word | label) = \frac{number \ of \ times \ word \ occured \ in \ ``label \ ``examples}{total \ number \ of \ examples \ with \ that \ label}$

Positive

I loved it I loved that movie I hated that loved it

Negative

I hated it I hated that movie I loved that hated it

P(I | negative) = ?

 $P(word|label) = \frac{number \ of \ times \ word \ occured \ in \ "label" \ examples}{total \ number \ of \ examples \ with \ that \ label}$

Positive

I loved it I loved that movie I hated that loved it

Negative

I hated it I hated that movie I loved that hated it

 P(I | negative) = 1.0

 $P(word | label) = \frac{number of times word occured in "label" examples}{total number of examples with that label}$

Positive

I loved it I loved that movie I hated that loved it

Negative

I hated it I hated that movie I loved that hated it

P(I | negative) = 1.0 P(movie | negative) = ?

 $P(word|label) = \frac{number \ of \ times \ word \ occured \ in \ "label" \ examples}{total \ number \ of \ examples \ with \ that \ label}$

Positive

I loved it I loved that movie I hated that loved it

Negative

I hated it I hated that movie I loved that hated it

P(I | positive) = 1.0P(loved | positive) = 3/3P(hated | positive) = 1/3

P(I | negative) = 1.0P(movie | negative) = 1/3

 $P(word|label) = \frac{number \ of \ times \ word \ occured \ in \ "label" \ examples}{total \ number \ of \ examples \ with \ that \ label}$

Classifying

P(I | positive) = 1.0P(loved | positive) = 1.0 p(hated | negative) = 1.0p(it | positive) = 2/3p(that | positive) = 2/3p(movie|positive) = 1/3 p(it | negative) = 2/3

 $P(I \mid negative) = 1.0$ p(that | negative) = 2/3P(movie | negative) = 1/3P(hated | positive) = 1/3 p(loved | negative) = 1/3

Notice that each of these is its own probability distribution

P(loved| positive)

P(loved | positive) = 2/3

P(no loved|positive) = 1/3

P(I | positive) = 1.0P(loved | positive) = 2/3p(it | positive) = 2/3p(that | positive) = 2/3p(movie|positive) = 1/3

 $P(I \mid negative) = 1.0$ p(hated | negative) = 1.0p(that | negative) = 2/3P(movie | negative) = 1/3p(it | negative) = 2/3P(hated | positive) = 1/3 p(loved | negative) = 1/3

How would we classify: "I hated movie"?

P(I | positive) * P(hated | positive) * P(movie | positive) = 1.0 * 1/3 * 1/3 = 1/9

P(I | negative) * P(hated | negative) * P(movie | negative) = 1.0 * 1.0 * 1/3 = 1/3

How would we classify: "I hated the movie"?

P(I | positive) * P(hated | positive) * P(the | positive) * P(movie | positive) =

P(I | negative) * P(hated | negative) * P(the | negative) * P(movie | negative) =

P(I | positive) * P(hated | positive) * P<mark>(the | positive</mark>) * P(movie | positive) =

P(I | negative) * P(hated | negative) * P(the | negative) * P(movie | negative) =

What are these?

 $P(I \mid positive) = 1.0$ $P(I \mid negative) = 1.0$ $P(loved \mid positive) = 2/3$ $p(hated \mid negative) = 1.0$ $p(it \mid positive) = 2/3$ $p(that \mid negative) = 2/3$ $p(that \mid positive) = 2/3$ $P(movie \mid negative) = 1/3$ $p(movie \mid positive) = 1/3$ $p(it \mid negative) = 2/3$ $P(hated \mid positive) = 1/3$ $p(it \mid negative) = 2/3$ $p(hated \mid positive) = 1/3$ $p(loved \mid negative) = 1/3$

P(I | positive) * P(hated | positive) * P(the | positive) * P(movie | positive) =

P(I | negative) * P(hated | negative) * P(the | negative) * P(movie | negative) =

0! Is this a problem?

 $P(I \mid positive) = 1.0$ $P(I \mid negative) = 1.0$ $P(loved \mid positive) = 2/3$ $p(hated \mid negative) = 1.0$ $p(it \mid positive) = 2/3$ $p(that \mid negative) = 2/3$ $p(that \mid positive) = 2/3$ $P(movie \mid negative) = 1/3$ $p(movie \mid positive) = 1/3$ $p(it \mid negative) = 2/3$ $P(hated \mid positive) = 1/3$ $p(it \mid negative) = 2/3$ $p(hated \mid positive) = 1/3$ $p(loved \mid negative) = 1/3$

P(I | positive) * P(hated | positive) * P(the | positive) * P(movie | positive) =

P(I | negative) * P(hated | negative) * P(the | negative) * P(movie | negative) =

Yes. They make the entire product go to 0!

 $P(I \mid positive) = 1.0$ $P(I \mid negative) = 1.0$ $P(loved \mid positive) = 2/3$ $p(hated \mid negative) = 1.0$ $p(it \mid positive) = 2/3$ $p(that \mid negative) = 2/3$ $p(that \mid positive) = 2/3$ $P(movie \mid negative) = 1/3$ $p(movie \mid positive) = 1/3$ $p(it \mid negative) = 2/3$ $P(hated \mid positive) = 1/3$ $p(it \mid negative) = 2/3$ $p(hated \mid positive) = 1/3$ $p(loved \mid negative) = 1/3$

P(I | positive) * P(hated | positive) * P(the | positive) * P(movie | positive) =

P(I | negative) * P(hated | negative) * P(the | negative) * P(movie | negative) =

Our solution: assume any unseen word has a small, fixed probability, e.g. in this example 1/10

P(I | positive) * P(hated | positive) * P(the | positive) * P(movie | positive) = 1/90

P(I | negative) * P(hated | negative) * P(the | negative) * P(movie | negative) = 1/30

Our solution: assume any unseen word has a small, fixed probability, e.g. in this example 1/10

Full disclaimer

I've fudged a few things on the Naïve Bayes model for simplicity

Our approach is very close, but it takes a few liberties that aren't technically correct, but it will work just fine **4**

If you're curious, I'd be happy to talk to you offline