INTRODUCTION TO MACHINE LEARNING

David Kauchak, Joseph C. Osborn CS 51A - Fall 2019

Machine Learning is...

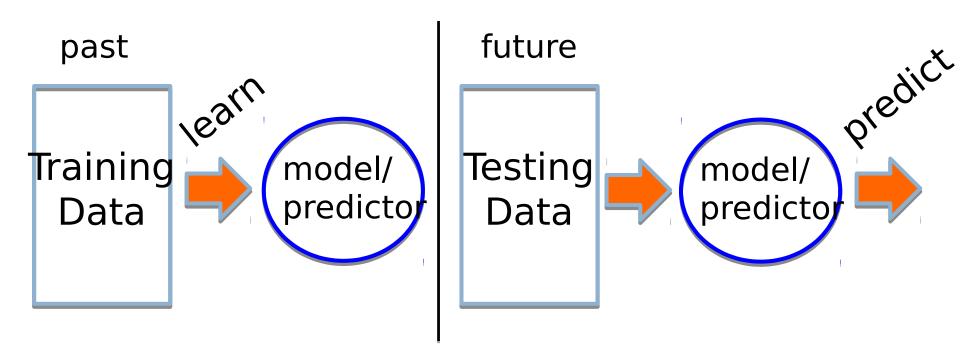
Machine learning is about predicting the future based on the past.

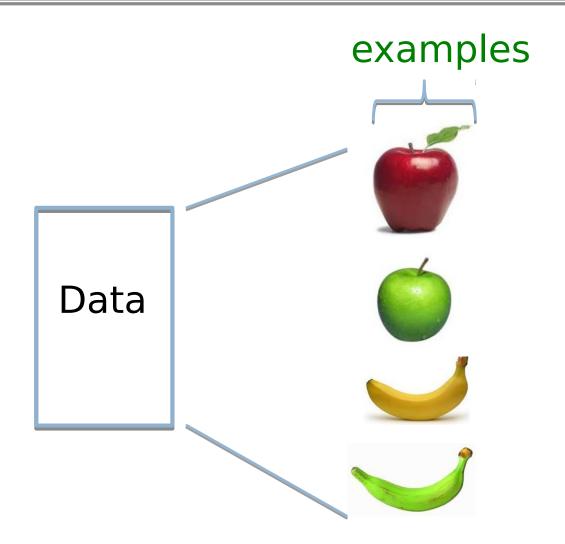
-- Hal Daume III

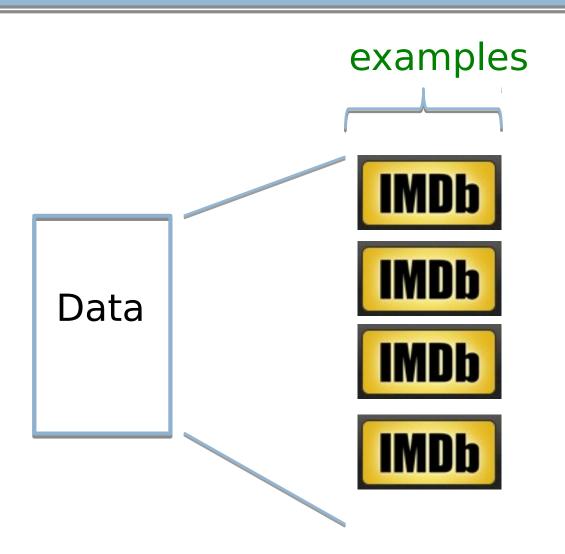
Machine Learning is...

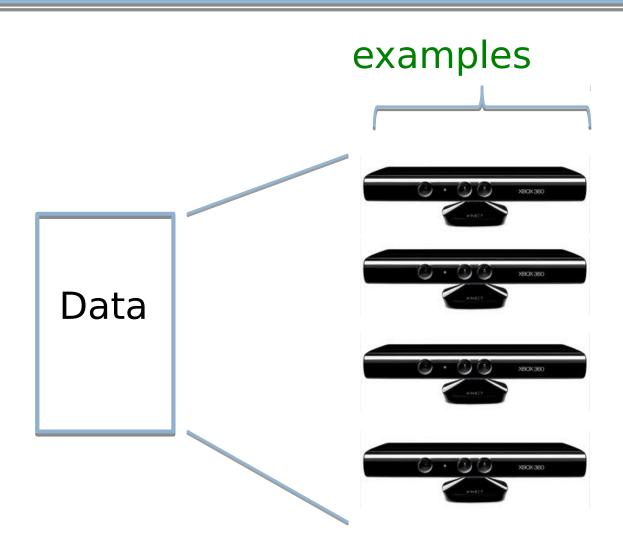
Machine learning is about predicting the future based on the past.

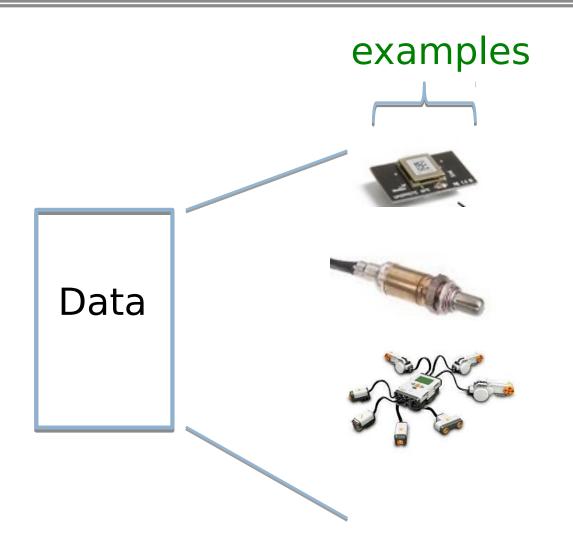
-- Hal Daume III



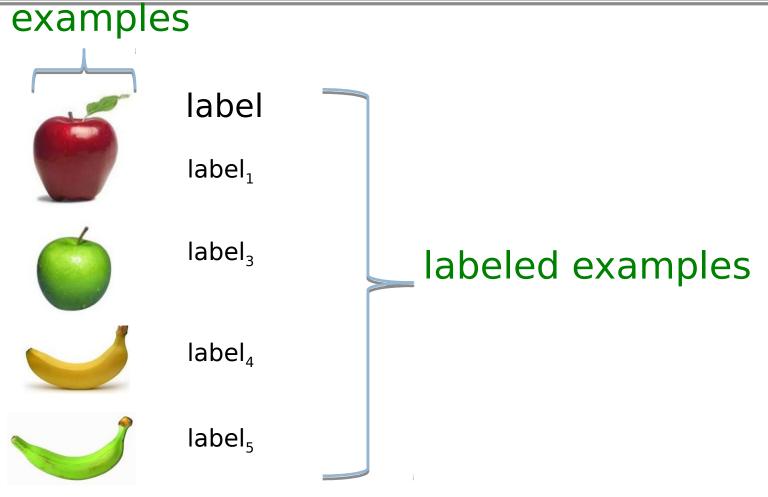






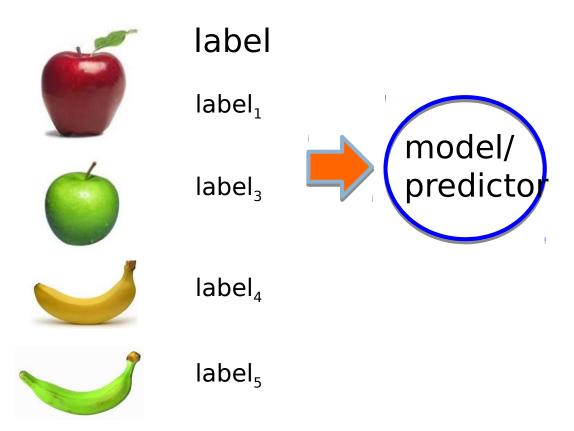


Supervised learning



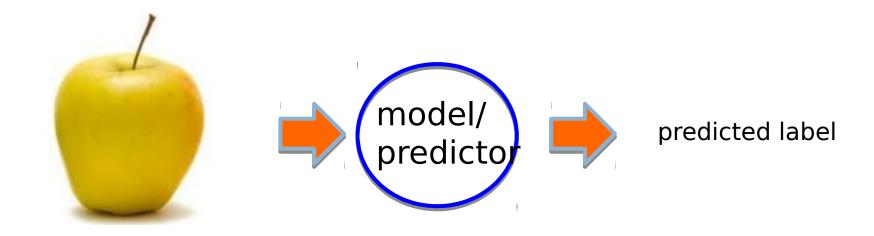
Supervised learning: given labeled

Supervised learning



Supervised learning: given labeled

Supervised learning



Supervised learning: learn to predict new example

Supervised learning: classification

label

apple

apple

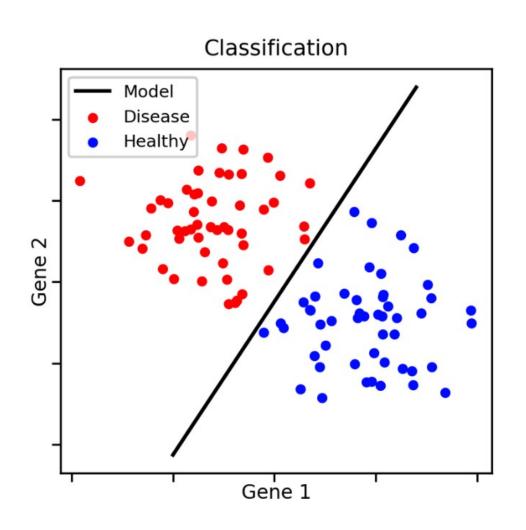
Classification: a finite set of labels

banana

banana

Supervised learning: given labeled

Classification Example



Classification Applications

Face recognition

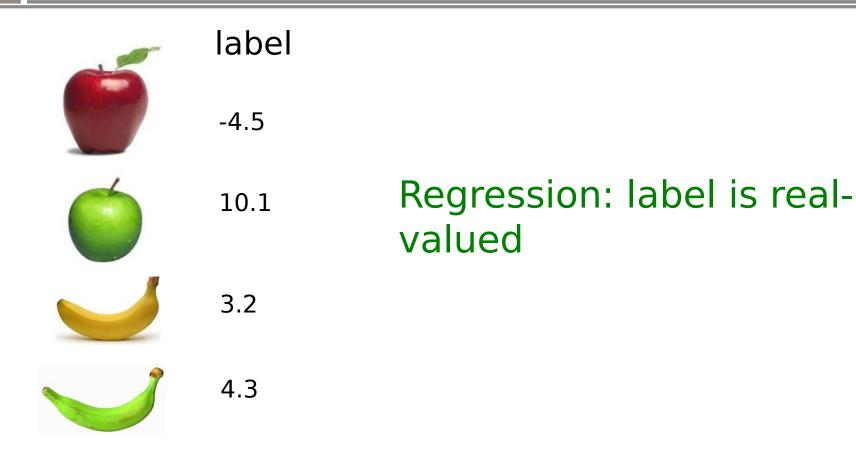
Character recognition

Spam detection

Medical diagnosis: From symptoms to illnesses

Biometrics: Recognition/authentication using physical and/or behavioral characteristics: Face, iris, signature, etc

Supervised learning: regression



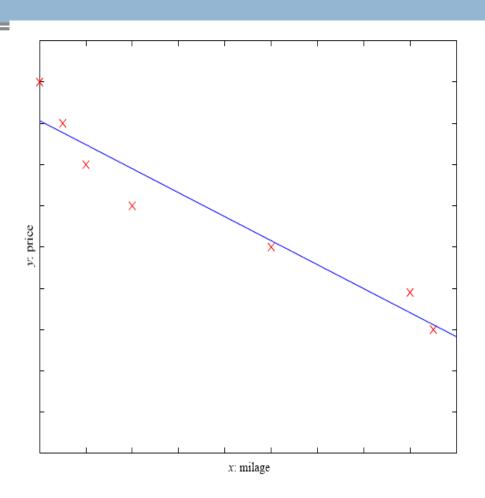
Supervised learning: given labeled

Regression Example

Price of a used car

x : car attributes (e.g. mileage)

y : price



Regression Applications

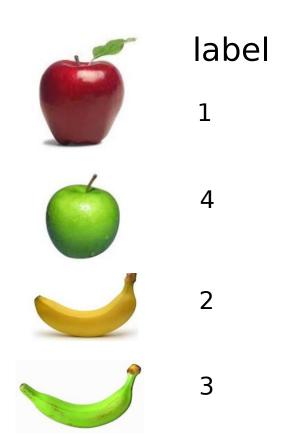
Economics/Finance: predict the value of a stock

Epidemiology

Car/plane navigation: angle of the steering wheel, acceleration, ...

Temporal trends: weather over time

Supervised learning: ranking

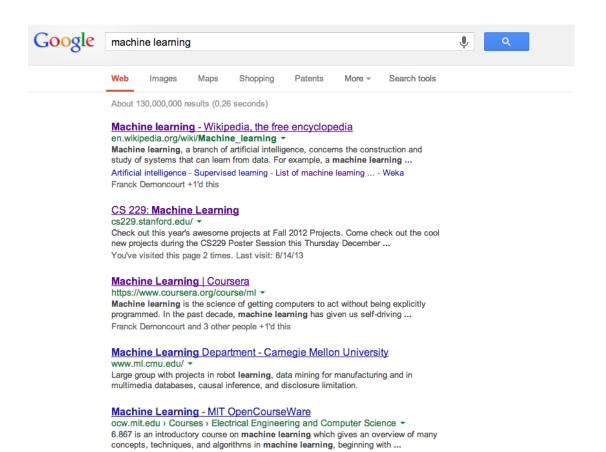


Ranking: label is a ranking

Supervised learning: given labeled

Ranking example

Given a query and a set of web pages, rank them according to relevance



Ranking Applications

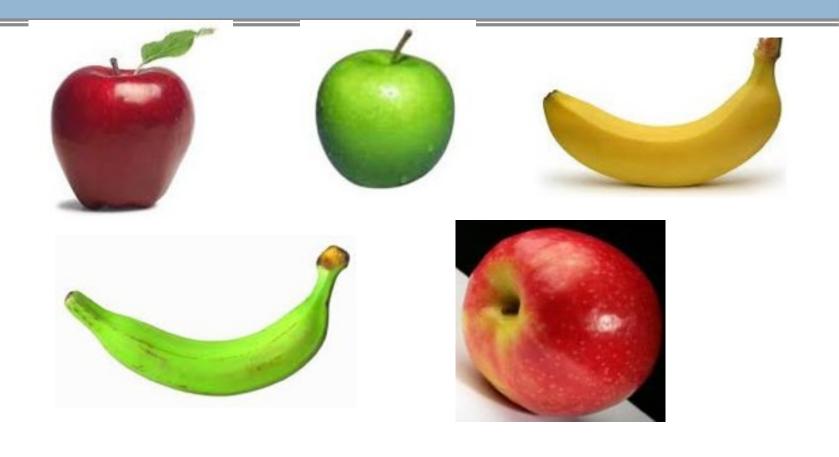
User preference, e.g. Netflix "My List" -- movie queue ranking

iTunes

flight search (search in general)

reranking N-best output lists

Unsupervised learning



Unupervised learning: given data, i.e. examples, but no labels

Unsupervised learning applications

learn clusters/groups without any label

customer segmentation (i.e. grouping)

image compression

bioinformatics: learn motifs

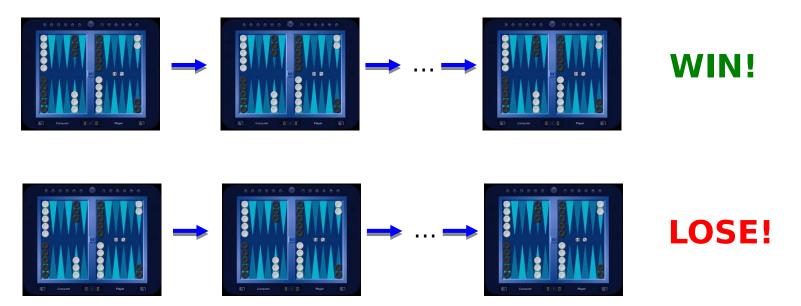
Reinforcement learning

left, right, straight, left, left, left, straight	GOOD	
left, straight, straight, left, right, straight, straight	BAD	
loft right straight loft loft straight	10 F	
left, right, straight, left, left, straight	18.5	

Given a *sequence* of examples/states and a *reward* after completing that sequence, learn to predict the action to take in for an individual example/state

Reinforcement learning example

Backgammon



Given sequences of moves and whether or not the player won at the end, learn to make good moves

Other learning variations

What data is available:

- Supervised, unsupervised, reinforcement learning
- semi-supervised, active learning, ...

How are we getting the data:

online vs. offline learning

Type of model:

- generative vs. discriminative
- parametric vs. non-parametric

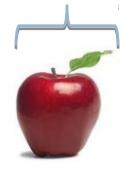
Representing examples

examples

What is an example? How is it represented?

Features

examples



features

$$f_1, f_2, f_3, ..., f_n$$

$$f_1, f_2, f_3, ..., f_n$$

How our algorithms actually "view" the data

Features are the questions we can ask about the examples

Features

examples

features

red, round, leaf, 3oz, ...

green, round, no leaf, 4oz,

yellow, curved, no leaf, 8oz,

green, curved, no leaf, 7oz,

How our algorithms actually "view" the data

Features are the questions we can ask about the examples

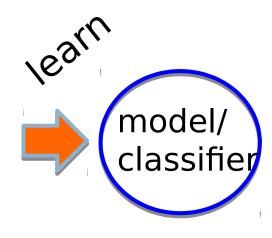
examples

label

red, round, leaf, 3oz, ... apple

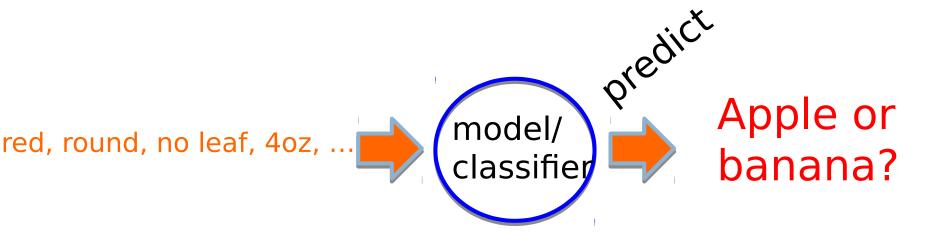
green, round, no leaf, 4oz, ...apple

yellow, curved, no leaf, 8oz, banana

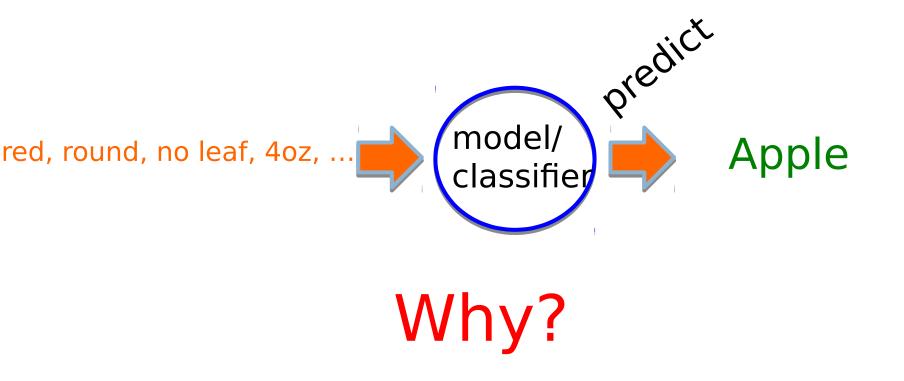


green, curved, no leaf, 7oz, .banana

During learning/training/induction, learn a model of what distinguishes apples and bananas based on the features



The model can then classify a new example based on the features



The model can then classify a new example based on the features

Training data

Test set

examples

label

red, round, leaf, 3oz, ...

apple

green, round, no leaf, 4oz, ...apple

red, round, no leaf, 4oz, ...?

yellow, curved, no leaf, 4oz, banana

green, curved, no leaf, 5oz, .banana

Training data

Test set

examples

label

red, round, leaf, 3oz, ...

apple

green, round, no leaf, 4oz, ...apple

red, round, no leaf, 4oz, ...?

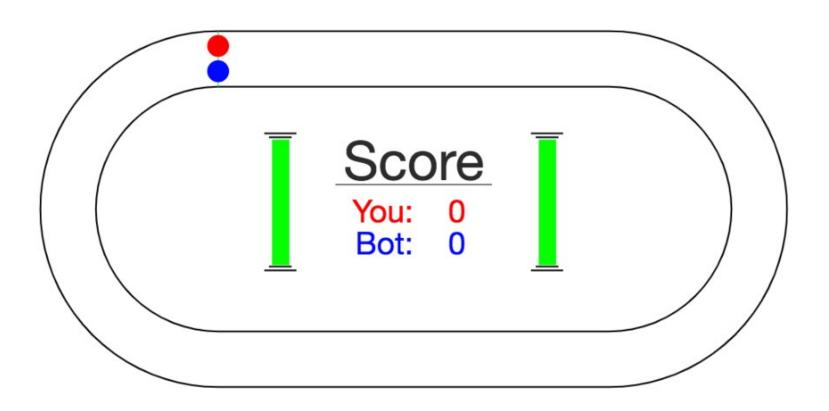
yellow, curved, no leaf, 4oz, banana

green, curved, no leaf, 5oz, .banana training data

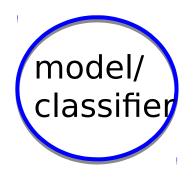
Learning is about generalizing from the

A simple machine learning example

http://www.mindreaderpro.appspot.com/

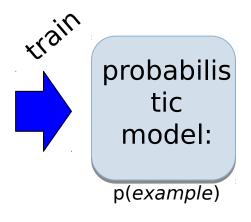


models



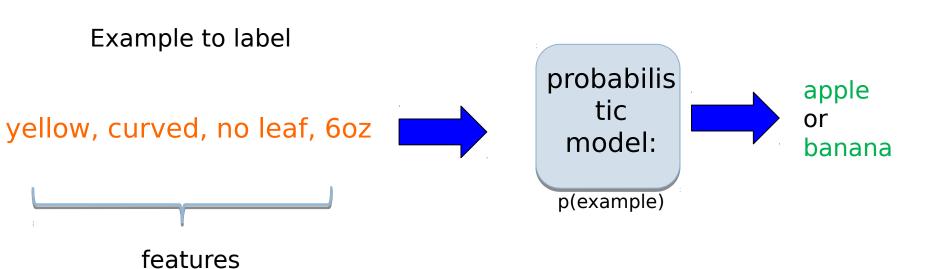
We have many, many different options for the model

They have different characteristics and perform differently (accuracy, speed, etc.)



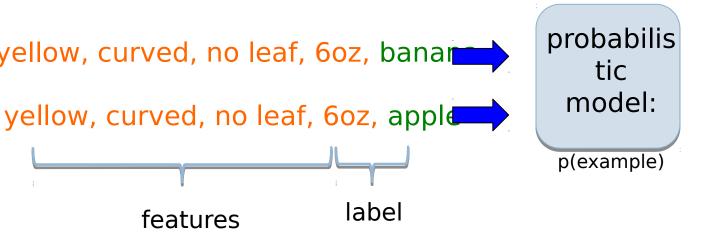
Model the data with a probabilistic model which tells us how likely a given data example is

Probabilistic models



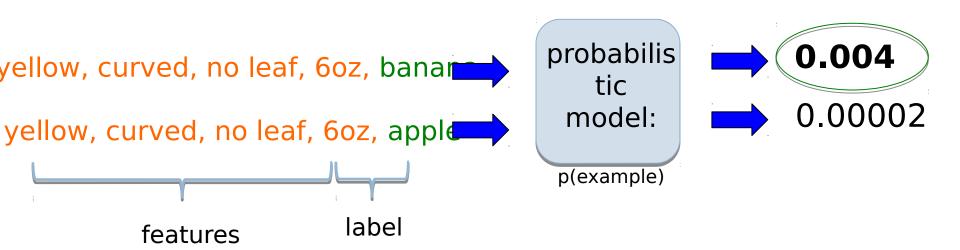
Probabilistic models

For each label, ask for the probability



Probabilistic models

Pick the label with the highest probability



Probability basics

A probability distribution gives the probabilities of all possible values of an event

For example, say we flip a coin three times. We can define the probability of the number of time the coin came up heads.

$$P(3) = ?$$

$$P(2) = ?$$

$$P(1) = ?$$

$$P(0) = ?$$

What are the possible outcomes of three flips (hint, there are eight of them)?

Assuming the coin is fair, what are our probabilities?



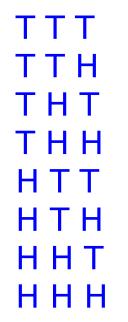
$$P(3) = ?$$

$$P(2) = ?$$

$$P(1) = ?$$

$$P(0) = ?$$

Assuming the coin is fair, what are our probabilities?



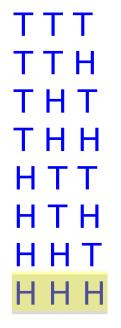
$$P(3) = ?$$

$$P(2) = ?$$

$$P(1) = ?$$

$$P(0) = ?$$

Assuming the coin is fair, what are our probabilities?



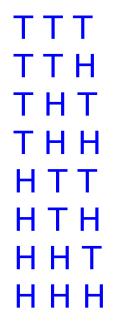
$$P(3) = \frac{1}{8}$$

$$P(2) = ?$$

$$P(1) = ?$$

$$P(0) = ?$$

Assuming the coin is fair, what are our probabilities?



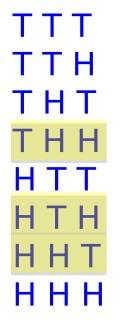
$$P(3) = 1/8$$

$$P(2) = ?$$

$$P(1) = ?$$

$$P(0) = ?$$

Assuming the coin is fair, what are our probabilities?



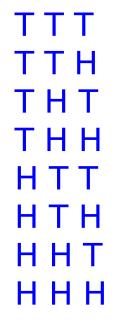
$$P(3) = 1/8$$

$$P(2) = \frac{3}{8}$$

$$P(1) = ?$$

$$P(0) = ?$$

Assuming the coin is fair, what are our probabilities?



$$P(3) = 1/8$$

$$P(2) = 3/8$$

$$P(1) = 3/8$$

$$P(0) = 1/8$$

A probability distribution assigns probability values to all possible values

Probabilities are between 0 and 1, inclusive

The sum of all probabilities in a distribution must be 1

$$P(3) = 1/8$$

$$P(2) = 3/8$$

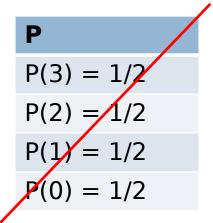
$$P(1) = 3/8$$

$$P(0) = 1/8$$

A probability distribution assigns probability values to all possible values

Probabilities are between 0 and 1, inclusive

The sum of all probabilities in a distribution must be 1



$$P(3) = -1$$
 $P(2) = 2$
 $P(1) = 0$
 $P(0) = 0$

Some example probability distributions

```
probability of heads
  (distribution options: heads, tails)
  probability of passing class
  (distribution options: pass, fail)
  probability of rain today
  (distribution options: rain or no rain)
  probability of getting an 'A'
  (distribution options: A, B, C, D, F)
```

Conditional probability distributions

Sometimes we may know extra information about the world that may change our probability distribution

P(X|Y) captures this (read "probability of X given Y")

- Given some information (Y) what does our probability distribution look like
- Note that this is still just a normal probability distribution

P(pass 51a)

P(pass) = 0.9

P(not pass) = 0.1

Unconditional probability distribution

P(pass 51a)

P(pass) = 0.9

P(not pass) = 0.1

P(pass 51a | don't study)

P(pass) = 0.5

P(not pass) = 0.5

P(pass 51a | do study)

P(pass) = 0.95

P(not pass) = 0.05

Still probability distributions over passing 51A

Conditional probability distributions

P(rain in LA)

P(rain) = 0.05

P(no rain) = 0.95

Unconditional probability distribution

P(rain in LA)

P(rain) = 0.05

P(no rain) = 0.95

P(rain in LA| January

P(rain) = 0.2

P(no rain) = 0.8

Still probability distributions over passing rain in LA

P(rain in LA| not January)

P(pass) = 0.03

P(not pass) = 0.97

Conditional probability distributions

Joint distribution

Probability over two events: P(X,Y)

Has probabilities for all possible combinations over the two events

51Pass, EngPass	P(51Pass, EngPass)
true, true	.88
true, false	.01
false, true	.04
false, false	.07

Joint distribution

Still a probability distribution

All questions/probabilities that we might want to ask about these two things can be calculated from the joing distribution

51Pass, EngPass	P(51Pass, EngPass)
true, true	.88
true, false	.01
false, true	.04
false, false	.07

What is P(51pass = true)?

Joint distribution

51Pass, EngPass	P(51Pass,
	EngPass)
true, true	.88
true, false	.01
false, true	.04
false, false	.07

There are two ways that a person can pass 51: they can do it while passing or not passing English

P(51Pass=true) = P(true, true) + P(true, false) = 0.89

Relationship between distributions

$$P(X,Y) = P(Y) * P(X|Y)$$
joint distribution conditional distribution unconditional distribution

Can think of it as describing the two events happening in two steps:

The likelihood of X and Y happening:

- 1. How likely it is that Y happened?
- Given that Y happened, how likely is it that X happened?

Relationship between distributions

P(51Pass, EngPass) = P(EngPass) * P(51Pass|EngPass)

The probability of passing CS51 and English is:

- 1. Probability of passing English *
- 2. Probability of passing CS51 given that you passed English

Relationship between distributions

$$P(51Pass, EngPass) = P(51Pass) * P(EngPass|51Pass)$$

The probability of passing CS51 and English is:

- 1. Probability of passing CS51 *
- 2. Probability of passing English given that you passed CS51

Can also view it with the other event happening first