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Perceptron learning algorithm

initialize weights of the model randomly

repeat until you get all examples right:

 for each “training” example (in a random order):
 calculate current prediction on the example
 if wrong:

wi = wi + λ * (actual - predicted) * xi



Perceptron learning

A few missing details, but not much more than this

Keeps adjusting weights as long as it makes mistakes

If the training data is linearly separable the perceptron 
learning algorithm is guaranteed to converge to the 
“correct” solution (where it gets all examples right)



Linearly Separable
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A data set is linearly separable if you can 
separate one example type from the with a 
line other

Which of these are linearly separable?
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Learning in multilayer networks

Similar idea as perceptrons

Examples are presented to the network

If the network computes an output that matches 
the desired, nothing is done

If there is an error, then the weights are adjusted to 
balance the error



Learning in multilayer networks
Key idea for perceptron learning: if the perceptron’s output 
is different than the expected output, update the weights

Challenge: for multilayer networks, we don’t know what the 
expected output/error is for the internal nodes

perceptron multi-layer network

expected output?



Backpropagation
Say we get it wrong, and we now want to update the weights

We can update this layer just as 
if it were a perceptron



Backpropagation
Say we get it wrong, and we now want to update the weights

“back-propagate” the error (actual – predicted):

Assume all of these nodes were responsible for 
some of the error

How can we figure out how much they were 
responsible for?



Backpropagation
Say we get it wrong, and we now want to update the weights

error (actual – predicted)

w1

w2 w3

error for node i is: wi error



Backpropagation
Say we get it wrong, and we now want to update the weights

Update these weights and 
continue the process back 
through the network



Backpropagation
calculate the error at the output layer

backpropagate the error up the network

Update the weights based on these errors

Can be shown that this is the appropriate thing to do based 
on our assumptions

That said, many neuroscientists don’t think the brain does 
backpropagation of errors



Neural network regression
Given enough hidden nodes, you can learn any 
function with a neural network

Challenges:
 overfitting – learning only the training data and not 

learning to generalize

 picking a network structure

 can require a lot of tweaking of parameters, 
preprocessing, etc.



Popular for digit recognition and many computer vision tasks

http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/


Cog sci people like NNs

Expression/emotion recognition
 Gary Cottrell et al

Language learning



Interpreting Satellite Imagery for 
Automated Weather Forecasting



What NNs learned from youtube

http://www.nytimes.com/2012/06/26/technology/in-a-big-network-of-computers-
evidence-of-machine-learning.html



What NNs learned from youtube

trained on 10M snapshots from youtube videos

NN with 1 billion connections

16,000 processors



Summary

Perceptrons, one layer networks, are insufficiently 
expressive

Multi-layer networks are sufficiently expressive and 
can be trained by error back-propogation

Many applications including speech, driving, hand 
written character recognition, fraud detection, 
driving, etc.



Our python NN module

Data:

x1 x2 x3 x1 and x2

0 0 0 1

0 1 0 0

1 0 0 1

1 1 0 0

0 0 1 1

0 1 1 1

1 0 1 1

1 1 1 0

table = \

[ ([0.0, 0.0, 0.0], [1.0]),

  ([0.0, 1.0, 0.0], [0.0]),

  ([1.0, 0.0, 0.0], [1.0]),

  ([1.0, 1.0, 0.0], [0.0]),

  ([0.0, 0.0, 1.0], [1.0]),

  ([0.0, 1.0, 1.0], [1.0]),

  ([1.0, 0.0, 1.0], [1.0]),

  ([1.0, 1.0, 1.0], [0.0]) ]



Data format

table = \

[ ([0.0, 0.0, 0.0], [1.0]),

  ([0.0, 1.0, 0.0], [0.0]),

  ([1.0, 0.0, 0.0], [1.0]),

  ([1.0, 1.0, 0.0], [0.0]),

  ([0.0, 0.0, 1.0], [1.0]),

  ([0.0, 1.0, 1.0], [1.0]),

  ([1.0, 0.0, 1.0], [1.0]),

  ([1.0, 1.0, 1.0], [0.0]) ]

list of examples

( [0.0, 0.0, 0.0], [1.0] )

input list output list

example = tuple



Training on the data

Construct a new network:

>>> nn = NeuralNet(3, 2, 1)

constructor: constructs a 
new NN object

input nodes

hidden nodes

output nodes



Training on the data

Construct a new network:

>>> nn = NeuralNet(3, 2, 1)

3 input nodes 2 hidden nodes

1 output node



Training on the data
>>> nn.train(table)
error 0.195200      

error 0.062292      

error 0.031077      

error 0.019437      

error 0.013728      

error 0.010437      

error 0.008332      

error 0.006885      

error 0.005837      

error 0.005047

by default trains 1000 iteration and prints out 
error values every 100 iterations



After training, can look at the weights

>>> nn.train(table)

>>> nn.getIHWeights()
[[-3.3435628797862624, -0.272324373735495], 

 [-4.846203738642956, -4.601230952566068], 

 [3.4233831101145973, 0.573534695637572],
 [2.9388429644152128, 1.8509761272713543]]



After training, can look at the weights

>>> nn.train(table)

>>> nn.getIHWeights()
[[-3.3435628797862624, -0.272324373735495], 

 [-4.846203738642956, -4.601230952566068], 

 [3.4233831101145973, 0.573534695637572],
 [2.9388429644152128, 1.8509761272713543]]



After training, can look at the weights

>>> nn.getHOWeights()

[[8.116192424400454], 

 [5.358094903107918],

 [-4.373829543609533]]



Many parameters to play with



Calling with optional parameters

>>> nn.train(table, iterations = 5, printInterval = 1)
error 0.005033      

error 0.005026      

error 0.005019      

error 0.005012      

error 0.005005



Train vs. test

TrainData TestData

>>> nn.train(trainData)
>>> nn.test(testData)



http://www.sciencebytes.org/2011/05/03/
blueprint-for-the-brain/


