
Backpropogation

David Kauchak/

Joseph C. Osborn

CSCI 051a

Fall 2019

Perceptron learning algorithm

initialize weights of the model randomly

repeat until you get all examples right:

 for each “training” example (in a random order):
 calculate current prediction on the example
 if wrong:

wi = wi + λ * (actual - predicted) * xi

Perceptron learning

A few missing details, but not much more than this

Keeps adjusting weights as long as it makes mistakes

If the training data is linearly separable the perceptron
learning algorithm is guaranteed to converge to the
“correct” solution (where it gets all examples right)

Linearly Separable

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

x1 x2 x1 or x2

0 0 0

0 1 1

1 0 1

1 1 1

x1 x2 x1 xor x2

0 0 0

0 1 1

1 0 1

1 1 0

A data set is linearly separable if you can
separate one example type from the with a
line other

Which of these are linearly separable?

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

x1

x2

x1 x2 x1 or x2

0 0 0

0 1 1

1 0 1

1 1 1

x1

x2

x1 x2 x1 xor x2

0 0 0

0 1 1

1 0 1

1 1 0

x1

x2

Which of these are linearly separable?

XOR
Input x1

Input x2

?

?

?

?

T = ?

T = ?

T = ?
?

?

x1 x2 x1 xor x2

0 0 0

0 1 1

1 0 1

1 1 0

Output = x1 xor x2

XOR
Input x1

Input x2

1

-1

-1

1

T = 1

T = 1

T = 1
1

1

x1 x2 x1 xor x2

0 0 0

0 1 1

1 0 1

1 1 0

Output = x1 xor x2

Learning in multilayer networks

Similar idea as perceptrons

Examples are presented to the network

If the network computes an output that matches
the desired, nothing is done

If there is an error, then the weights are adjusted to
balance the error

Learning in multilayer networks
Key idea for perceptron learning: if the perceptron’s output
is different than the expected output, update the weights

Challenge: for multilayer networks, we don’t know what the
expected output/error is for the internal nodes

perceptron multi-layer network

expected output?

Backpropagation
Say we get it wrong, and we now want to update the weights

We can update this layer just as
if it were a perceptron

Backpropagation
Say we get it wrong, and we now want to update the weights

“back-propagate” the error (actual – predicted):

Assume all of these nodes were responsible for
some of the error

How can we figure out how much they were
responsible for?

Backpropagation
Say we get it wrong, and we now want to update the weights

error (actual – predicted)

w1

w2 w3

error for node i is: wi error

Backpropagation
Say we get it wrong, and we now want to update the weights

Update these weights and
continue the process back
through the network

Backpropagation
calculate the error at the output layer

backpropagate the error up the network

Update the weights based on these errors

Can be shown that this is the appropriate thing to do based
on our assumptions

That said, many neuroscientists don’t think the brain does
backpropagation of errors

Neural network regression
Given enough hidden nodes, you can learn any
function with a neural network

Challenges:
 overfitting – learning only the training data and not

learning to generalize

 picking a network structure

 can require a lot of tweaking of parameters,
preprocessing, etc.

Popular for digit recognition and many computer vision tasks

http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

Cog sci people like NNs

Expression/emotion recognition
 Gary Cottrell et al

Language learning

Interpreting Satellite Imagery for
Automated Weather Forecasting

What NNs learned from youtube

http://www.nytimes.com/2012/06/26/technology/in-a-big-network-of-computers-
evidence-of-machine-learning.html

What NNs learned from youtube

trained on 10M snapshots from youtube videos

NN with 1 billion connections

16,000 processors

Summary

Perceptrons, one layer networks, are insufficiently
expressive

Multi-layer networks are sufficiently expressive and
can be trained by error back-propogation

Many applications including speech, driving, hand
written character recognition, fraud detection,
driving, etc.

Our python NN module

Data:

x1 x2 x3 x1 and x2

0 0 0 1

0 1 0 0

1 0 0 1

1 1 0 0

0 0 1 1

0 1 1 1

1 0 1 1

1 1 1 0

table = \

[([0.0, 0.0, 0.0], [1.0]),

 ([0.0, 1.0, 0.0], [0.0]),

 ([1.0, 0.0, 0.0], [1.0]),

 ([1.0, 1.0, 0.0], [0.0]),

 ([0.0, 0.0, 1.0], [1.0]),

 ([0.0, 1.0, 1.0], [1.0]),

 ([1.0, 0.0, 1.0], [1.0]),

 ([1.0, 1.0, 1.0], [0.0])]

Data format

table = \

[([0.0, 0.0, 0.0], [1.0]),

 ([0.0, 1.0, 0.0], [0.0]),

 ([1.0, 0.0, 0.0], [1.0]),

 ([1.0, 1.0, 0.0], [0.0]),

 ([0.0, 0.0, 1.0], [1.0]),

 ([0.0, 1.0, 1.0], [1.0]),

 ([1.0, 0.0, 1.0], [1.0]),

 ([1.0, 1.0, 1.0], [0.0])]

list of examples

([0.0, 0.0, 0.0], [1.0])

input list output list

example = tuple

Training on the data

Construct a new network:

>>> nn = NeuralNet(3, 2, 1)

constructor: constructs a
new NN object

input nodes

hidden nodes

output nodes

Training on the data

Construct a new network:

>>> nn = NeuralNet(3, 2, 1)

3 input nodes 2 hidden nodes

1 output node

Training on the data
>>> nn.train(table)
error 0.195200

error 0.062292

error 0.031077

error 0.019437

error 0.013728

error 0.010437

error 0.008332

error 0.006885

error 0.005837

error 0.005047

by default trains 1000 iteration and prints out
error values every 100 iterations

After training, can look at the weights

>>> nn.train(table)

>>> nn.getIHWeights()
[[-3.3435628797862624, -0.272324373735495],

 [-4.846203738642956, -4.601230952566068],

 [3.4233831101145973, 0.573534695637572],
 [2.9388429644152128, 1.8509761272713543]]

After training, can look at the weights

>>> nn.train(table)

>>> nn.getIHWeights()
[[-3.3435628797862624, -0.272324373735495],

 [-4.846203738642956, -4.601230952566068],

 [3.4233831101145973, 0.573534695637572],
 [2.9388429644152128, 1.8509761272713543]]

After training, can look at the weights

>>> nn.getHOWeights()

[[8.116192424400454],

 [5.358094903107918],

 [-4.373829543609533]]

Many parameters to play with

Calling with optional parameters

>>> nn.train(table, iterations = 5, printInterval = 1)
error 0.005033

error 0.005026

error 0.005019

error 0.005012

error 0.005005

Train vs. test

TrainData TestData

>>> nn.train(trainData)
>>> nn.test(testData)

http://www.sciencebytes.org/2011/05/03/
blueprint-for-the-brain/

