
Ani1 K. Ja in
Michigan State University

Jianchang M a o
K.M. Mohiuddin
ZBMAZmaden Research Center

umerous advances have been made in developing intelligent
systems, some inspired by biological neural networks. N Researchers from many scientific disciplines are designing arti-

ficial neural networks (A”s) to solve a variety of problems in pattern
recognition, prediction, optimization, associative memory, and control
(see the “Challenging problems” sidebar).

Conventional approaches have been proposed for solving these prob-
lems. Although successful applications can be found in certain well-con-
strained environments, none is flexible enough to perform well outside
its domain. ANNs provide exciting alternatives, and many applications
could benefit from using them.’

This article is for those readers with little or no knowledge of ANNs to
help them understand the other articles in this issue of Computer. We dis-
cuss the motivations behind the development of A ” s , describe the basic
biological neuron and the artificial computational model, outline net-
work architectures and learning processes, and present some of the most
commonly used ANN models. We conclude with character recognition, a
successful ANN application.

WHY ARTIFICIAL NEURAL NETWORKS?
The long course of evolution has given the human brain many desir-

able characteristics not present invon Neumann or modern parallel com-
puters. These include

These massively parallel

systems with large numbers

of interconnected simple

processors may solve a variety

of challenging computational

problems. This tutorial

provides the background and

the basics.

massive parallelism,
distributed representation and computation,
learning ability,
generalization ability,
adaptivity,
inherent contextual information processing,
fault tolerance, and
low energy consumption.

It is hoped that devices based on biological neural networks will possess
some of these desirable characteristics.

Modern digital computers outperform humans in the domain of
numeric computation and related symbol manipulation. However,
humans can effortlessly solve complex perceptual problems (like recog-
nizing a man in a crowd from a mere glimpse of his face) at such a high
speed and extent as to dwarf the world’s fastest computer. Why is there
such a remarkable difference in their performance? The biological neural
system architecture is completely different from the von Neumann archi-
tecture (see Table l). This difference significantly affects the type of func-
tions each computational model can best perform.

Numerous efforts to develop “intelligent” programs based on von
Neumann’s centralized architecture have not resulted in general-purpose
intelligent programs. Inspired by biological neural networks, ANNs are
massively parallel computing systems consisting of an exremely large num-
ber of simple processors with many interconnections. ANN models attempt
to use some “organizational” principles believed to be used in the human

0018-9162/96/$5.000 1996 IEEE March 1996

I

ification is to assign an input pat-

n applications include
ition, EEG waveform
, and printed circuit

a with known class
lores t h e similarity

n labeled training patterns (input-out-

function p(x) (subject to noise). The task
ion is to find an estimate, say i, of
p (Figure A3). Various engineering
problems require function approx-

d e s MtJ, y(fJ, . . . , y(t,)l in a time
n, t h e task is to predict t h e sample
me tn+,. Prediction/forecasting has a
ecision-making in business, science,
k market prediction and weather

roblems in mathematics, statistics,
medicine, and economics can be

lems. The goal of an optimiza-
olution satisfying a set of con-
tive function is maximized or

Normal

Abnormal

++
+

Over-fitting t o
noisy training data

M True function
e

(4)

Airplane partially
occluded by clouds

Associative
memory

Load torque

Controller

(7)

Figure A. Tasks that neur

Computer

brain. Modeling a biological nervous system using A " s
can also increase our understanding of biological functions.
State-of-the-art computer hardware technology (such as
VLSI and optical) has made this modeling feasible.

A thorough study of A " s requires knowledge of neu-
rophysiology, cognitive science/psychology, physics (sta-
tistical mechanics), control theory, computer science,
artificial intelligence, statistics/mathematics, pattern
recognition, computer vision, parallel processing, and
hardware (digital/analog/VLSI/optical) . New develop-
ments in these disciplines continuously nourish the field.
On the other hand, ANNs also provide an impetus to these
disciplines in the form of new tools and representations.
This symbiosis is necessary for the vitality of neural net-
work research. Communications among these disciplines
ought to be encouraged.

Brief historical review
ANN research has experienced three periods of exten-

sive activity. The first peak in the 1940s was due to
McCulloch and Pitts' pioneering The second
occurred in the 1960s with Rosenblatt's perceptron con-
vergence theorem5 and Minsky and Papert's work showing
the limitations of a simple perceptron.6 Minsky and
Papert's results dampened the enthusiasm of most
researchers, especially those in the computer science com-
munity. The resulting lull in neural network research
lasted almost 20 years. Since the early 1980s, ANNs have
received considerable renewed interest. The major devel-
opments behind this resurgence include Hopfield's energy
approach7 in 1982 and the back-propagation learning
algorithm for multilayer perceptrons (multilayer feed-
forward networks) first proposed by Werbos,8 reinvented
several times, and then popularized by Rumelhart et aL9
in 1986. Anderson and RosenfeldlO provide a detailed his-
torical account of ANN developments.

Biological neural networks
A neuron (or nerve cell) is a special biological cell that

processes information (see Figure 1). It is composed of a
cell body, or soma, and two types of out-reaching tree-like
branches: the axon and the dendrites. The cell body has a
nucleus that contains information about hereditary traits
and a plasma that holds the molecular equipment for pro-
ducing material needed by the neuron. A neuron receives
signals (impulses) from other neurons through its dendrites
(receivers) and transmits signals generated by its cell body
along the axon (transmitter), which eventually branches
into strands and substrands. At the terminals of these
strands are the synapses. A synapse is an elementary struc-
ture and functional unit between two neurons (an axon
strand of one neuron and a dendrite of another), When the
impulse reaches the synapse's terminal, certain chemicals
called neurotransmitters are released. The neurotransmit-
ters diffuse across the synaptic gap, to enhance or inhibit,
depending on the type of the synapse, the receptor neuron's
own tendency to emit electrical impulses. The synapse's
effectiveness can be adjusted by the signals passing through
it so that the synapses can learn from the activities in which
they participate. This dependence on history acts as amem-
ory, which is possibly responsible for human memory.

The cerebral cortex in humans is a large flat sheet of neu-

Figure 1. A sketch of a biological neuron.

ions about 2 to 3 millimeters thick with a surface area of
about 2,200 cm2, about twice the area of a standard com-
puter keyboard. The cerebral cortex contains about 10"
neurons, which is approximately the number of stars in the
Milky Way." Neurons are massively connected, much more
complex and dense than telephone networks. Each neuron
is connected to 103 to lo4 other neurons. In total, the human
brain contains approximately 1014 to loi5 interconnections.

Neurons communicate through a very short train of
pulses, typically milliseconds in duration. The message is
modulated on the pulse-transmission frequency. This fre-
quency can vary from a few to several hundred hertz, which
is a million times slower than the fastest switching speed in
electronic circuits. However, complex perceptual decisions
such as face recognition are typically made by humans
within a few hundred milliseconds. These decisions are
made by a network of neurons whose operational speed is
only a few milliseconds. This implies that the computations
cannot take more than about 100 serial stages. In other

March 1996

Figure 2. McCulloch-Pitts model of a neuron.

words, the brain runs parallel programs that are about 100
steps long for such perceptual tasks. This is known as the
hundred step rule.12 The same timing considerations show
that the amount of information sent from one neuron to
another must be very small (a few bits). This implies that
critical information is not transmitted directly, but captured
and distributed in the interconnections-hence the name,
connectionist model, used to describe A " s .

Interested readers can find more introductory and eas-
ily comprehensible material on biological neurons and
neural networks in Brunak and Lautrup.ll

ANN OVERVIEW

Computational models of neurons
McCulloch and Pitts4 proposed a binary threshold unit

as a computational model for an artificial neuron (see
Figure 2).

This mathematical neuron computes a weighted sum of
its n input signals,x,, j = 1,2, . . . , n, and generates an out-
put of 1 if this sum is above a certain threshold U .

Otherwise, an output of 0 results. Mathematically,

where O () is a unit step function at 0, and w, is the synapse
weight associated with the jth input. For simplicity of nota-
tion, we often consider the threshold U as anotherweight
wo = - U attached to the neuron with a constant input x,
= 1. Positive weights correspond to excitatory synapses,
while negative weights model inhibitory ones. McCulloch
and Pitts proved that, in principle, suitably chosen weights
let a synchronous arrangement of such neurons perform
universal computations. There is a crude analogy here to
a biological neuron: wires and interconnections model
axons and dendrites, connection weights represent
synapses, and the threshold function approximates the
activity in a soma. The McCulloch and Pitts model, how-
ever, contains a number of simplifylng assumptions that
do not reflect the true behavior of biological neurons.

The McCulloch-Pitts neuron has been generalized in
many ways. An obvious one is to use activation functions
other than the threshold function, such as piecewise lin-
ear, sigmoid, or Gaussian, as shown in Figure 3. The sig-
moid function i s by far the most frequently used in A " s .
It is a strictly increasing function that exhibits smoothness

Computer

and has the desired asymptotic properties.
The standard sigmoid function is the logis-
tic function, defined by

where p is the slope parameter.

Network architectures
A " s can be viewed as weighted directed
graphs in which artificial neurons are
nodes and directed edges (with weights)
are connections between neuron outputs
and neuron inputs.

Based on the connection pattern (architecture), A " s
can be grouped into two categories (see Figure 4) :

* feed-forward networks, in which graphs have no

* recurrent (or feedback) networks, in which loops
loops, and

occur because of feedback connections.

In the most common family of feed-forward networks,
called multilayer perceptron, neurons are organized into
layers that have unidirectional connections between them.
Figure 4 also shows typical networks for each category.

Different connectivities yield different network behav-
iors. Generally speaking, feed-forward networks are sta-
tic, that is, they produce only one set of output values
rather than a sequence of values from a given input. Feed-
forward networks are memory-less in the sense that their
response to an input is independent of the previous net-
workstate. Recurrent, or feedback, networks, on the other
hand, are dynamic systems. When a new input pattern is
presented, the neuron outputs are computed. Because of
the feedback paths, the inputs to each neuron are then
modified, which leads the network to enter a new state.

Different network architectures require appropriate
learning algorithms. The next section provides an
overview of learning processes.

Learning
The ability to learn is a fundamental trait of intelligence.

Although aprecise definition of learning is difficult to for-
mulate, a learning process in the ANN context can be
viewed as the problem of updating network architecture
and connection weights so that a network can efficiently
perform a specific task. The network usually must learn
the connection weights from available training patterns.
Performance is improved over time by iteratively updat-
ing the weights in the network. ANNs' ability to auto-
matically learnfrom examples makes them attractive and
exciting. Instead of following a set of rules specified by
human experts, ANNs appear to learn underlying rules
(like input-output relationships) from the given collec-
tion of representative examples. This is one of the major
advantages of neural networks over traditional expert sys-
tems.

To understand or design a learning process, you must
first have a model of the environment in which a neural
network operates, that is, you must know what informa-
tion is available to the network. We refer to this model as

(a) Jr- (4 (C) 4 (4
Figure 3. Different types of activation functions: (a) threshold, (b) piecewise linear, (c) sigmoid, and (d)
Gaussian.

Figure 4. A taxonomy of feed-forward and recurrentlfeedback network architectures.

a learning ~ a r a d i g m . ~ Second, you must understand how
network weights are updated, that is, which learning rules
govern the updating process. A learning algorithm refers
to a procedure in which learning rules are used for adjust-
ing the weights.

There are three main learning paradigms: supervised,
unsupervised, and hybrid. In supervised learning, or
learning with a “teacher,” the network is provided with a
correct answer (output) for every input pattern. Weights
are determined to allow the network to produce answers
as close as possible to the known correct answers.
Reinforcement learning is a variant of supervised learn-
ing in which the network is provided with only a critique
on the correctness of network outputs, not the correct
answers themselves. In contrast, unsupervised learning, or
learning without a teacher, does not require a correct
answer associated with each input pattern in the training
data set. It explores the underlying structure in the data,
or correlations between patterns in the data, and orga-
nizes patterns into categories from these correlations.
Hybrid learning combines supervised and unsupervised
learning. Part of the weights are usually determined
through supervised learning, while the others are
obtained through unsupervised learning.

Learning theory must address three fundamental and
practical issues associated with learning from samples:
capacity, sample complexity, and computational com-
plexity. Capacity concerns how many patterns can be

stored, and what functions and decision boundaries a net-
work can form.
, Sample complexity determines the number of training
patterns needed to train the network to guarantee a valid
generalization. Too few patterns may cause “over-fitting”
(wherein the network performs well on the training data
set, but poorly on independent test patterns drawn from the
same distribution as the training patterns, as in Figure A3).

Computational complexity refers to the time required
for a learning algorithm to estimate a solution from train-
ing patterns. Many existing learning algorithms have high
computational complexity. Designing efficient algorithms
for neural network learning is avery active research topic.

There are four basic types of learning rules: error-
correction, Boltzmann, Hebbian, and competitive learning.

ERROR-CORRECTION RULES. In the supervised learn-
ing paradigm, the network is given a desired output for
each input pattern. During the learning process, the actual
output y generated by the network may not equal the
desired output d. The basic principle of error-correction
learning rules is to use the error signal (d -y) to modify
the connection weights to gradually reduce this error.

The perceptron learning rule is based on this error-cor-
rection principle. A perceptron consists of a single neuron
with adjustable weights, w,, j = 1,2, . . . , n, and threshold
U, as shown in Figure 2. Given an input vector x= (xl, x,,
. . . , x J t , the net input to the neuron is

March 1996

ctor (x,,x,, . . . , xJ* and
of t h e neuron.

red output, t is the iteration

i= l

The outputy of the perceptron is + 1 ifv > 0, and 0 oth-
erwise. In a two-class classification problem, the percep-
tron assigns an input pattern to one class ify = 1, and to
the other class ify=O. The linear equation

j=1

defines the decision boundary (a hyperplane in the
n-dimensional input space) that halves the space.

Rosenblatt5 developed a learning procedure to deter-
mine the weights and threshold in a perceptron, given a
set of training patterns (see the “Perceptron learning algo-
rithm” sidebar).

Note that learning occurs only when the perceptron
makes an error. Rosenblatt proved that when trainingpat-
terns are drawn from two linearly separable classes, the
perceptron learning procedure converges after a finite
number of iterations. This is the perceptron convergence
theorem. In practice, you do not know whether the pat-
terns are linearly separable. Many variations of this learn-
ing algorithm have been proposed in the literature.2 Other
activation functions that lead to different learning char-
acteristics can also be used. However, a single-layerper-

Figure 5. Orientation selectivity of a single neuron
trained using the Hebbian rule.

ceptron can onlyseparate linearly separable patterns as long
as a monotonic activationfunction is used.

The back-propagation learning algorithm (see the
“Back-propagation algorithm sidebar”) is also based on
the error-correction principle.

BOLTZMA” L F I N G . Boltzmann machines are sym-
metric recurrent networks consisting of binary units (+ 1
for “on” and -1 for “off’). By symmetric, we mean that the
weight on the connection from unit i to unitj is equal to the
weight on the connection from unit j to unit i (wy = w J . A
subset of the neurons, called visible, interact with the envi-
ronment; the rest, called hidden, do not. Each neuron is a
stochastic unit that generates an output (or state) accord-
ing to the Boltzmann distribution of statistical mechanics.
Boltzmann machines operate in two modes: clamped, in
whichvisible neurons are clamped onto specific states deter-
mined by the environment; andfree-running, in which both
visible and hidden neurons are allowed to operate freely.

Boltzmann learning is a stochastic learning rule derived
from information-theoretic and thermodynamic princi-
ples.lOThe objective of Boltzmann learning is to adjust the
connection weights so that the states ofvisible units satisfy
a particular desired probability distribution. According to
the Boltzmann learning rule, the change in the connec-
tion weight wg is given by

Awij =q(P,j -pij),

where q is the learning rate, and p, and py are the corre-
lations between the states of units z and J when the net-
work operates in the clamped mode and free-running
mode, respectively. The values of pli and p, are usuallyesti-
mated from Monte Carlo experiments, which are
extremely slow.

Boltzmann learning can be viewed as a special case of
error-correction learning in which error IS measured not
as the direct difference between desired and actual out-
puts, but as the difference between the correlations among
the outputs of two neurons under clamped and free-
running operating conditions.

HEBBIAN RULE. The oldest learning rule is Hebb’spos-
tulate of 1e~rning.l~ Hebb based it on the following obser-
vation from neurobiological experiments: If neurons on
both sides of a synapse are activated synchronously and
repeatedly, the synapse’s strength is selectively increased.

Mathematically, the Hebbian rule can be described as

WJt + 1) = W , W + ?lY]@) x m ,

where x, andy, are the output values of neurons i and J ,
respectively, which are connected by the synapse w,, and q
is the learning rate. Note thatx, is the input to the synapse.

An important property of this rule is that learning is
done locally, that is, the change in synapse weight depends
only on the activities of the two neurons connected by it.
This significantly simplifies the complexity of the learning
circuit in a VLSI implementation.

A single neuron trained using the Hebbian rule exhibits
an orientation selectivity. Figure 5 demonstrates this prop-
erty. The points depicted are drawn from a two-dimen-

Computer

sional Gaussian distribution and used for training a neu-
ron. The weight vector of the neuron is initialized tow, as
shown in the figure. As the learning proceeds, the weight
vector moves progressively closer to the direction w of
maximal variance in the data. In fact, w is the eigenvector
of the covariance matrix of the data corresponding to the
largest eigenvalue.

COMPETITIVE W I N G RULES. Unlike Hebbian learn-
ing (in which multiple output units can be fired simulta-
neously), competitive-learning output units compete
among themselves for activation. As a result, only one out-
put unit is active at any given time. This phenomenon is
known as winner-take-all. Competitive learning has been
found to exist in biological neural network^.^

Competitive learning often clusters or categorizes the
input data. Similar patterns are grouped by the network
and represented by a single unit. This grouping is done
automatically based on data correlations.

The simplest competitive learning network consists of a
single layer of output units as shown in Figure 4. Each out-
put unit i in the network connects to all the input units (+)
via weights, w,, j = 1,2, . . . , n. Each output unit also con-
nects to all other output units via inhibitoryweights but has
a self-feedbackwith an excitatoryweight. As a result of com-
petition, only the unit i‘ with the largest (or the smallest)
net input becomes the winner, that is, w,*. x 2 w,. x, Vi, or
1 1 w; - x /I < /I w, - x 11, Vi. When all the weight vectors are
normalized, these two inequalities are equivalent.

A simple competitive learning rule can be stated as

0, i + i ” .

Figure 6. An example of competitive learning: (a)
before learning; (b) after learning.

The most well-known example of competitive learning
is vector quantization for data compression. It has been
widely used in speech and image processing for efficient
storage, transmission, and modeling. Its goal is to repre-
sent a set or distribution of input vectors with a relatively
small number of prototype vectors (weight vectors), or a
codebook. Once a codebook has been constructed and
agreed upon by both the transmitter and the receiver, you
need only transmit or store the index of the corresponding
prototype to the input vector. Given an input vector, its cor-
responding prototype can be found by searching for the
nearest prototype in the codebook.

SUMMARY. Table 2 summaries various learning algo-
rithms and their associated network architectures (this
is not an exhaustive list). Both supervised and unsuper-
vised learning paradigms employ learning rules based

Note that only the weights of the winner unit get updated.
The effect of this learning rule is to move the stored pat-
tern in the winner unit (weights) a little bit closer to the
input pattern. Figure 6 demonstrates a geometric inter-
pretation of competitive learning. In this example, we
assume that all input vectors have been normalized to have
unit length. They are depicted as black dots in Figure 6.
The weight vectors of the three units are randomly ini-
tialized. Their initial and final positions on the sphere after
competitive learning are marked as Xs in Figures 6a and
6b, respectively. In Figure 6, each of the three natural
groups (clusters) of patterns has been discovered by an
output unit whose weight vector points to the center of
gravity of the discovered group.

You can see from the competitive learning rule that the
network will not stop learning (updating weights) unless
the learning rate q is 0. A particular input pattern can fire
different output units at different iterations during learn-
ing. This brings up the stability issue of a learning system.
The system is said to be stable if no pattern in the training
data changes its category after a finite number of learning
iterations. One way to achieve stabilityis to force the learn-
ing rate to decrease gradually as the learning process pro-
ceeds towards 0. However, this artificial freezing of learning
causes another problem termed plasticity, which is the abil-
ity to adapt to new data. This is known as Grossberg’s sta-
bility-plasticity dilemma in competitive learning.

March 1996

Figure 7. A typical three-layer feed-forward network architecture.

on error-correction, Hebbian, and competitive learning.
Learning rules based on error-correction can be used for
training feed-forward networks, while Hebbian learning
rules have been used for all types of network architec-

tures. However, each learning algorithm is designed for
training a specific architecture. Therefore, when we dis-
cuss a learning algorithm, a particular network archi-
tecture association is implied. Each algorithm can

Computer

Description of I decision regions Structure

Two laver

I

Arbitrary
(complexity
limited by

number of hidden
units)

Half plane

bounded by

hyperplane

Arbitrary
(complexity
I i mited by

number of hidden

Three laver I units)

I General II Exclusive-OR I Classes with

4 I

Figure 8. A geometric interpretation of the role of hidden unit in a two-dimensional input space.

perform only a few tasks well. The last column of Table
2 lists the tasks that each algorithm can perform. Due to
space limitations, we do not discuss some other algo-
rithms, including Adaline, Madaline,14 linear discrimi-
nant analysis,15 Sammon's p r o j e c t i ~ n , ~ ~ and principal
component analysis.2 Interested readers can consult the
corresponding references (this article does not always
cite the first paper proposing the particular algorithms).

MULTllAYER FEED-FORWARD
NETWORKS

Figure 7 shows a typical three-layer perceptron. In gen-
eral, a standard L-layer feed-forward network (we adopt
the convention that the input nodes are not counted as a
layer) consists of an input stage, (L-1) hidden layers, and
an output layer of units successively connected (fully or
locally) in a feed-forward fashion with no connections
between units in the same layer and no feedback connec-
tions between layers.

Multilayer perceptron
The most popular class of multilayer feed-forward net-

works is multilayer perceptrons in which each computa-
tional unit employs either the thresholding function or the
sigmoid function. Multilayer perceptrons can form arbi-
trarily complex decision boundaries and represent any
Boolean function.6 The development of the back-propa-
gation learning algorithm for determining weights in a
multilayer perceptron has made these networks the most
popular among researchers and users of neural networks.

We denote w,I(l) as the weight on the connection between
the ith unit in layer (2-1) to jth unit in layer 1.

Let {(x(l), dc1)), (x(2), d@)), . . . , (xb), d(p)) } be a set ofp
training patterns (input-output pairs), where x(l) E R" is
the input vector in the n-dimensional pattern space, and

d(l) E [0, l]", an m-dimensional hypercube. For classifi-
cation purposes, m is the number of classes. The squared-
error cost function most frequently used in the ANN
literature is defined as

The back-propagation algorithm9 is a gradient-descent
method to minimize the squared-error cost function in
Equation 2 (see "Back-propagation algorithm" sidebar).

A geometric interpretation (adopted and modified from
Lippmann") shown in Figure 8 can help explicate the role
of hidden units (with the threshold activation function).

Each unit in the first hidden layer forms a hyperplane
in the pattern space; boundaries between pattern classes
can be approximated by hyperplanes. A unit in the sec-
ond hidden layer forms a hyperregion from the outputs
of the first-layer units; a decision region is obtained by
performing an AND operation on the hyperplanes. The
output-layer units combine the decision regions made by
the units in the second hidden layer by performing logi-
cal OR operations. Remember that this scenario is
depicted only to explain the role of hidden units. Their
actual behavior, after the network is trained, could differ.

A two-layer network can form more complex decision
boundaries than those shown in Figure 8. Moreover, mul-
tilayer perceptrons with sigmoid activation functions can
form smooth decision boundaries rather than piecewise
linear boundaries.

Radial Basis Function network
The Radial Basis Function (RBF) network,3 which has

two layers, is a special class of multilayer feed-forward net-

March 1996

works. Each unit in the hidden layer employs a radial basis
function, such as a Gaussian kernel, as the activation func-
tion. The radial basis function (or kernel function) is cen-
tered at the point specified by the weight vector associated
with the unit. Both the positions and the widths of these
kernels must be learned from training patterns. There are
usually many fewer kernels in the RBF network than there
are training patterns. Each output unit implements a lin-
ear combination of these radial basis functions. From the
point of view of function approximation, the hidden units
provide a set of functions that constitute a basis set for rep-
resenting input patterns in the space spanned by the hid-
den units.

There are a variety of learning algorithms for the RBF
network.3 The basic one employs a two-step learning strat-
egy, or hybrid learning. It estimates kernel positions and
kernel widths using an unsupervised clustering algorithm,
followed by a supervised least mean square (LMS) algo-
rithm to determine the connection weights between the
hidden layer and the output layer. Because the output units
are linear, a noniterative algorithm can be used. After this
initial solution is obtained, a supervised gradient-based
algorithm can be used to refine the network parameters.

This hybrid learning algorithm for training the RBF net-
work converges much faster than the back-propagation
algorithm for training multilayer perceptrons. However,
for many problems, the RBF network often involves a
larger number of hidden units. This implies that the run-
time (after training) speed of the RBF network is often
slower than the runtime speed of a multilayer perceptron.
The efficiencies (error versus network size) of the RBF net-
work and the multilayer perceptron are, however, prob-
lem-dependent. It has been shown that the RBF network
has the same asymptotic approximation power as a mul-
tilayer perceptron.

Issues

works, including
There are many issues in designing feed-forward net-

how many layers are needed for a given task,
how many units are needed per layer,
how will the network perform on data not included in

how large the training set should be for “good” gen-
the training set (generalization ability), and

eralization.

Although multilayer feed-forward networks using back-
propagation have been widely employed for classification
and function approximation,2 many design parameters
still must be determined by trial and error. Existing theo-
retical results provide onlyvery loose guidelines for select-
ing these parameters in practice.

KOHONEN’S SELF-ORGANIZING MAPS
The self-organizing map (SOM)I6 has the desirable prop-

erty of topology preservation, which captures an impor-
tant aspect of the feature maps in the cortex of highly
developed animal brains. In a topology-preserving map-
ping, nearby input patterns should activate nearby output
units on the map. Figure 4 shows the basic network archi-
tecture of Kohonen’s SOM. I t basically consists of a two-
dimensional array of units, each connected to all n input
nodes. Let wg denote the n-dimensional vector associated
with the unit at location (i, j) of the 2D array. Each neuron
computes the Euclidean distance between the input vec-
tor x and the stored weight vector wy.

This SOM is a special type of competitive learning net-
work that defines a spatial neighborhood for each output
unit. The shape of the local neighborhood can be square,
rectangular, or circular. Initial neighborhood size is often
set to one half to two thirds of the network size and shrinks
over time according to a schedule (for example, an expo-
nentially decreasing function). During competitive learn-
ing, all the weight vectors associated with the winner and
its neighboring units are updated (see the “SOM learning
algorithm” sidebar).

Kohonen’s SOM can be used for projection of multi-
variate data, density approximation, and clustering. It has
been successfully applied in the areas of speech recogni-
tion, image processing, robotics, and process control.2 The
design parameters include the dimensionality of the neu-
ron array, the number of neurons in each dimension, the
shape of the neighborhood, the shrinking schedule of the
neighborhood, and the learning rate.

ADAPTlM RESONANCE
THEORY MODELS

Recall that the stability-plasticzty dilemma is an impor-
tant issue in competitive learning. How do we learn new
things (plasticity) and yet retain the stability to ensure that
existingknowledge is not erased or corrupted? Carpenter
and Grossberg’s Adaptive Resonance Theory models
(ART1, ART2, and ARTMap) were developed in an attempt
to overcome this dilemma.” The network has a sufficient
supply of output units, but they are not used until deemed
necessary. Aunit is said to be committed (uncommitted) if
it is (is not) being used. The learning algorithm updates

Computer

the stored prototypes of a category only if
the input vector is sufficiently similar to
them. An input vector and a stored proto-
type are said to resonate when they are suf-
ficiently similar. The extent of similarity is
controlled by avigilanceparameter, p, with
0 < p < 1, which also determines the num-
ber of categories. When the input vector is
not sufficiently similar to any existing pro-
totype in the network, a new category is
created, and an uncommitted unit is
assigned to it with the input vector as the
initial prototype. If no such uncommitted
unit exists, a novel input generates no
response.

We present only ART1, which takes
binary (0/1) input to illustrate the model.
Figure 9 shows a simplified diagram of the

Comparison (input) layer

Figure 9. ART1 network.

ARTl architecture.2 It consists of two layers of fully con-
nected units. A top-down weight vector w, is associated
with unitj in the input layer, and a bottom-up weight vec-
tor iVt is associated with output unit i; iVL is the normal-
ized version of w,.

- w, w, =-,
wJ1

(3)

where E is a small number used to break the ties in select-
ing the winner. The top-down weight vectors wJ’s store
cluster prototypes. The role of normalization is to prevent
prototypes with a long vector length from dominating pro-
totypes with a short one. Given an n-bit input vector x, the
output of the auxiliary unitA is given by

where Sgn,,(x) is the signum function that produces + 1
ifx 2 0 and 0 otherwise, and the output of an input unit is
given by

5 =Sgn,, xI + wJ,O, +A-1.5

if no output OJ is “on“,
I T

= { 2 1 X I wJIO,, otherwise.

A reset signal R is generated only when the similarity is
less than the vigilance level. (See the “ART1 learning algo-
rithm” sidebar.)

The ARTl model can create new categories and reject
an input pattern when the network reaches its capacity.
However, the number of categories discovered in the input
data by ARTl is sensitive to the vigilance parameter.

HOPFIELD NETWORK
Hopfield used a network energy function as a tool for

designing recurrent networks and for understanding their
dynamic behavior.’ Hopfield’s formulation made explicit

the principle of storing information as dynamically stable
attractors and popularized the use of recurrent networks
for associative memory and for solving combinatorial opti-
mization problems.

A Hopfield network with n units has two versions:
binary and continuouslyvalued. Let v, be the state or out-
put of the ith unit. For binary networks, v, is either + 1 or
-1, but for continuous networks, v, can be any value
between 0 and 1. Let w, be the synapse weight on the con-
nection from units i to j. In Hopfield networks, w, = w,~,
Vi, j (symmetric networks), and w,, = 0, Vi (no self-feed-
back connections). The network dynamics for the binary
Hopfield network are

vi = s g n [F wijvj - oi] (4)

March 1996

The dynamic update of network states in Equation 4 can
be carried out in at least two ways: sytzchrenously and asp-
:hronously. In a synchronous updating scheme, all units
are updated simultaneously at each time step. A central
:lock must synchronize the process. An asynchronous
updating scheme selects one unit at a time and updates its
state. The unit for updating can be randomly chosen.

The energy function of the binary Hopfield network in
a state v = (vl, v2, . . . , v J T is given by

E = - -

The central property of the energy function is that as net-
work state evolves according to the network dynamics
(Equation 4), the network energy always decreases and
eventually reaches a local minimum point (attractor)
where the network stays with a constant energy.

Associative memory
When a set of patterns is stored in these networkamac-

tors, it can be used as an associative memory. Any pattern
present in the basin of attraction of a stored pattern can
be used as an index to retrieve it.

An associative memory usually operates in two phases:
storage and retrieval. In the storage phase, the weights in
the network are determined so that the attractors of the
network memorize a set ofp n-dimensional patterns {XI,
x2, . . . , xp} to be stored. A generalization of the Hebbian
learning rule can be used for setting connection weights
wli. In the retrieval phase, the input pattern is used as the
initial state of the network, and the network evolves
according to its dynamics. A pattern is produced (or
retrieved) when the network reaches equilibrium.

How many patterns can be stored in a network with n
binary units? In other words, what is the memory capac-
ity of a network? It is finite because a network with n
binary units has a maximum of 2“ distinct states, and not
all of them are attractors. Moreover, not all amactors (sta-
ble states) can store useful patterns. Spurious attractors
can also store patterns different from those in the train-
ing set.2

It has been shown that the maximum number of ran-
dom patterns that a Hopfield network can store is P,, =
0.15~ When the number of stored patternsp < 0.15n, a
nearly perfect recall can be achieved. When memorypat-
terns are orthogonal vectors instead of random patterns,
more patterns can be stored. But the number of spurious
attractors increases asp reaches capacity. Several learn-
ing rules have been proposed for increasing the memory
capacity of Hopfield networks.2 Note that we require n2
connections in the network to storep n-bit patterns.

Energy minimization
Hopfield networks always evolve in the direction that

leads to lower network energy. This implies that if a com-
binatorial optimization problem can be formulated as min-
imizing this energy, the Hopfield network can be used to
find the optimal (or suboptimal) solution by letting the
network evolve freely. In fact, any quadratic objective func-
tion can be rewritten in the form of Hopfield network

Computer

energy. For example, the classic Traveling Salesman
Problem can be formulated as such a problem.

APPLICATIONS
We have discussed anumber of important ANN models

and learning algorithms proposed in the litcraturc. They
have been widely used for solving the seven classes of
problems described in the beginning of this article. Table
2 showed typical suitable tasks for A” models and learn-
ing algorithms. Remember that to successfullyworkwith
real-world problems, you must deal with numerous design
issues, including network model, network size, activation
function, learning parameters, and number of training
samples. We next discuss an optical character recognition
(OCR) application to illustrate how multilayer feed-
forward networks are successfully used in practice.

OCR deals with the problem of processing a scanned
image of text and transcribing it into machine-readable
form. We outline the basic components of OCR and
explain how ANNs are used for character classification.

An OCR system
An OCR system usually consists of modules for prepro-

cessing, segmentation, feature extraction, classification,
and contextual processing. A paper document is scanned
to produce a gray-level or binary (black-and-white) image.
In the preprocessing stage, filtering is applied to remove
noise, and text areas are located and converted to a binary
image using a global or local adaptive thresholding method.
En the segmentation step, the text image is separated into
individual characters. This is a particularly difficult task
with handwritten text, which contains a proliferation of
touching characters. One effective technique is to breakthe
composite pattern into smaller patterns (over-segmenta-
tion) and find the correct character segmentation points
using the output of a pattern classifier.

Because of various degrees of slant, skew, and noise
level, and various writing styles, recognizing segmented
characters is not easy. This is evident from Figure 10, which
shows the size-normalized character bitmaps of a sample
set from the NIST (National Institute of Standards and
Technology) hand-print character database.l8

Schemes
Figure 11 shows the two main schemes for using ANNs

in an OCR system. The first one employs an explicit fea-
ture extractor (nor necessarily a neural network). For
instance, contour direction features are used in Figure 11.
The extracted features are passed to the input stage of a
multilayer feed-forward network This scheme is very
flexible in incorporating a large variety of features. The
other scheme does not explicitly extract features from the
raw data. The feature extraction implicitly takes place
within the intermediate stages (hidden layers) of the A”.
A nice property of this scheme is that feature extraction
and classification are integrated and trained simultane-
ously to produce optimal classification results. It is not
clear whether the types of features that can be extracted
by this integrated architecture are the most effective for
character recognition. Moreover, this scheme requires a
much larger network than the first one.

A typical example of this integrated fea-
ture extraction-classification scheme is the
network developed by Le Cun et aLZo for zip
code recognition. A 16 x 16 normalized
gray-level image is presented to a feed-for-
ward network with three hidden layers.
The units in the first layer are locally con-
nected to the units in the input layer, form-
ing a set of local feature maps. The second
hidden layer is constructed in a similar
way. Each unit in the second layer also
combines local information coming from
feature maps in the first layer.

The activation level of an output unit can
be interpreted as an approximation of the
a posteriori probability of the input pat-
tern’s belonging to a particular class. The
output categories are ordered according to
activation levels and passed to the post-
processing stage. In this stage, contextual
information is exploited to update the clas-
sifier’s output. This could, for example,
involve looking up a dictionary of admissi-
ble words, or utilizing syntactic constraints
present, for example, in phone or social
security numbers.

ad~a+blhb BIbbSeCEcCCddd
~dddeIeee~S~~Fef3939Ahh
m&h,;TTTiTnJJmzERK
1 1 I 1 1 1 h ” l ~ ~ l ” ~ l n l ~ ~ ~ 0 d

d d d d e e e e e f f f f f f g g g g h h h

h h h h i i i i i i i j j j j k k k k k k k

l l l l l l l m m m m m m m n n n n n n o o

EIS $IS 5 5 s t 2; lflfalu~ KIblO U UIV l/lP
V V UIY J kl vv @JJI+I.u X XlrCl’rC K Y I? YIY
y #/ t(L L 2 3 tlz

v v v v w w w w w w w x x x x x x x y y y y

y y z z z z z z z

Results
A ” s work very well in the OCR application. However,

there is no conclusive evidence about their superiority over
conventional statistical pattern classifiers. At the First
Census Optical Character Recognition System Conference
held in 1992,18 more than 40 different handwritten char-
acter recognition systems were evaluated based on their
performance on a common database. The top 10 perform-
ers used either some type of multilayer feed-forward net-
work or a nearest neighbor-based classifier. A ” s tend to
be superior in terms of speed and memory requirements
compared to nearest neighbor methods. Unlike the nearest
neighbor methods, classification speed using A ” s is inde-
pendent of the size of the training set. The recognition accu-
racies of the top OCR systems on the NIST isolated
(presegmented) character data were above 98 percent for
digits, 96 percent for uppercase characters, and 87 percent
for lowercase characters. (Low recognition accuracy for
lowercase characters was largely due to the fact that the
test data differed significantly from the training data, as
well as being due to “ground-truth errors.) One conclu-
sion drawn from the test is that OCR system performance
on isolated characters compares well with human perfor-
mance. However, humans still outperform OCR systems
on unconstrained and cursive handwritten documents.

DEVELOPMENTS IN A ” s HAVE STIMULATED a lot of enthusi-
asm and criticism. Some comparative studies are optimistic,
some offer pessimism. For many tasks, such as pattern
recognition, no one approach dominates the others. The
choice of the best technique should be driven by the given
application’s nature. We should tryto understand the capac-
ities, assumptions, and applicability of various approaches
and maximally exploit their complementary advantages to

Input text l l
Segmented
characters c 0 Irc\l a 1 1

/ \

Feature J‘
extractor

I

L m A” Recognizer

I I

\/
Reccgnfzed C o b d p u t e r text in ASCII

I I

Figure 11. Two schemes for using ANNs in an OCR
system.

develop better intelligent systems. Such an effort may lead
to a synergistic approach that combines the strengths of
A ” s with other technologies to achieve significantly bet-
ter performance for challenging problems. As Minskyzl
recently observed, the time has come to build systems out
of diverse components. Individual modules are important,
but we also need a good methodology for integration. It is
clear that communication and cooperative work between

March 1996

*esearchers working in ANNs and other disciplines will not
mly avoid repetitious work but (and more important) will
stimulate and benefit individual disciplines. I

Acknowledgments
Ne thank Richard Casey (IBM Almaden); Pat Flynn
(Washington State University) ; William Punch, Chitra
Dorai, and Kalle Karu (Michigan State University); Ali
Khotanzad (Southern Methodist University); and lshwar
Sethi (Wayne State University) for their many useful sug-
gestions.

References
1. DARFANeuralNetworkStudy, AFCEAInt’lPress, Fairfax,Va.,

2. J. Hertz, A. Krogh, and R.G. Palmer, Introduction to the “he-
ory ofNeural Computation, Addison-Wesley, Reading, Mass.,
1991.

3. S. Haykin, Neural Networks: A Comprehensive Foundation,
MacMillan College Publishing Co., New York, 1994.

4. W.S. McCulloch and W. Pitts, “A Logical Calculus of Ideas
Immanent in Nervous Activity,” Bull. Mathematical Bio-

5. R. Rosenblatt, Principles of Neurodynamics, Spartan Books,
New York, 1962.

6. M. Minsky and S. Papert, Perceptrons:Anlntroduction to Com-
putational Geometry, MIT Press, Cambridge, Mass., 1969.

7. J.J. Hopfield, “Neural Networks and Physical Systems with
Emergent Collective Computational Abilities,” in Roc. Nat‘l
Academy of Sciences, USA 79,1982, pp. 2,5542,558.

8. P. Werbos, “Beyond Regression: New Tools for Prediction and
Analysis in the Behavioral Sciences,” PhD thesis, Dept. of
Applied Mathematics, Harvard University, Cambridge, Mass.,
1974.

9. D.E. Rumelhart and J.L. McClelland, ParallelDistributedRo-
cessing: Exploration in the Microstructure of Cognition, MIT
Press, Cambridge, Mass., 1986.

10. J.A. Anderson and E. Rosenfeld, Neurocomputing: Founda-
tions ofResearch, MIT Press, Cambridge, Mass., 1988.

11. S. Brunak and B. Lautrup, Neural Networks, Computers with
Intuition, World Scientific, Singapore, 1990.

12. J. Eeldman, M.A. Fanty, and N.H. Goddard, “Computingwith
Structured Neural Networks,” Computer, Vol. 21, No. 3, Mar.
1988, pp. 91-103.

13. D.O. Hebb, The OrganizationofBehavior, JohnWiley&Sons,
New York, 1949.

14. R.P. Lippmann, “An Introduction to Computingwith Neural
Nets,”lEEEASSP Magazine, Vol. 4, No. 2, Apr. 1987, pp. 4-22.

15. A.K. Jain and J. Mao, “Neural Networks and Pattern Recog-
nition,” in Computational Intelligence: Imitating Life, J.M.
Zurada, R. J. Marks 11, and C.J. Robinson, eds., IEEE Press,
Piscataway, N.J., 1994, pp. 194-212.

16. T. Kohonen, SelfOrganization andAssociativeMemory, Third
Edition, Springer-Verlag, New York, 1989.

17. G.A. Carpenter and S. Grossberg, Pattern Recognition by Self-
OrganizingNeuralNetworks, MITPress, Cambridge, Mass., 1991.

18. “The First Census Optical Character Recognition System Con-
ference,” R.A. Wilkinson et al., eds., . Tech. Report, NISTIR
4912, US Dept. Commerce, NIST, Gaithersburg, Md., 1992.

19. K. Mohiuddin and J. Mao, “AComparative Study ofDifferent

1988.

physics, Vol. 5,1943, pp. 115-133.

Computer

Classifiers for Handprinted Character Recognition,” in Pat-
tern Recognitzon m Practrce IV, E.S. Gelsema and L.N. Kanal,
eds., Elsevler Science, The Netherlands, 1994, pp. 437-448.

20. Y. Le Cunet al., “Back-Propagation Applied to Handwritten Zip
Code Recognition, Neural Computation, Vol. 1, 1989, pp
541-551.

21. M. Minsky, “Logical Versus Analogical or Symbolic Versus
Connectionist or Neat Versus Scruffy,”AIMagazine, Vol 65,
No. 2,1991, pp. 34-51.

AniZK Ja in is a University Distinguished Professor and the
chair of the Department of Computer Science a t Michigan
State University. His interests include statistical pat tern
recognition, exploratorypattern analysis, neural networks,
Markov random fields, texture analysis, remote sensing,
interpretation of range images, and 30 object recognition.

Jain sewed as editor-in-chief of IEEE Transactions on Pat-
ternhalysis and Machine Intelligencefrom 1991 to 1994,
and currently serves o n the editorial boards of Pattern
Recognition, Pattern Recognition Letters, Journal of Math-
ematical Imaging, Journal of Applied Intelligence, and
IEEE Transactions on Neural Networks. He has coauthored,
edited, and coedited numerous books i n the field. Jain is a
fellow of the IEEE and a speaker in the IEEE Computer Soci-
ety’s Distinguished Visitors Program f o r the Asia-Pacific
region. He is a member of the IEEE Computer Society.’

Jianchang M a o is a research staff member a t the IBM
Almaden Research Center. His interests include pattern recog-
nition, neural networks, document image analysis, image
processing, computer vision, and parallel computing.

Mao received the BS degree in physics in 1983 and the MS
degree in electrical engineering in 1986from East China Nor-
mal University in Shanghai. He received the PhD in computer
science f r o m Michigan State University in 1994. Mao is the
abstracts editor of IEEE Tradsactions on Neural Networks.
He is a member of the IEEE and the IEEE Computer Society.

K M . Mohiudd in is the manager of the Document Image
Analysis and Recognition project in the Computer Science
Department a t the IBMAlmaden Research Center. He has led
IBM projects o n high-speed reconfigurable.machines for
industrial machine vision, parallel processing f o r scient@
computing, and document imaging systems. His interests
include document image analysis, handwriting recogni-
tion/OCR, data compression, and computer architecture.

Mohiuddin received the MS and PhD degrees i n electrical
engineering f r o m Stanford University i n 1977 and 1982,
respectively. He is a n associate editor of IEEE Transactions on
Pattern Analysis and Machine Intelligence. He served on
Computer’s editorial board f r o m 1984 to 1989, and is a
senior member of the IEEE and a member of the IEEE Com-
puter Society.

Readers can contactAni1 Jain a t the Department of Com-
puter Science, Michigan State University, A714 Wells Hall,
East Lansing, MI 48824; jain@cps.msu.edu.

mailto:jain@cps.msu.edu

