
CS51A - Assignment 5

Due: Thursday October 10, at 11:59pm

https://dilbert.com/strip/2008-05-08

For this assignment, we’re going to be doing some basic corpus analysis. A corpus is a collection of
documents/texts. By looking at different characteristics of those texts, in aggregate, we can often
start to understand more about the language used in the corpus.

You may (and I would encourage you to) work with a partner on this assignment. If you do, you
must work with a different partner than you did for assignment 4.

Additionally, you must both be there when either of you are working on the project and you should
only be coding on one computer (i.e. pair programming). If you would like a partner, but don’t
have one, talk to Prof Osborn or Dr. Dave in lab and we can try and pair people up.

Course Feedback

This is the end of week 5 and we’re about a third of the way through the course. We wanted
to check in with all of you, see how things are going, and see if there are things that we can do
to improve the course and your learning experience. Please take a few minutes to fill out this
anonymous course feedback form:

https://forms.gle/qKrGdjPUsgxM7vmB6

I’ll go over the feedback in class next week.

In general, if you ever have feedback or ways in which the course could be improved, please do let
us know!

1

Data

To give us a bit of variety (and allow us to make comparisons) we’re going to be looking at text
from a few different sources. Follow the same procedure you’ve done for the last two assignments
for downloading the starter:

– Create a directory called assignment5 somewhere on your computer.

– Download the following file into your assignment5 directory and unzip it by double-clicking
on it:

http://www.cs.pomona.edu/classes/cs51a/assignments/assign5-starter.zip

– Delete the zip file. You should now have a folder called assignment5 with four files.

- test.txt: A simple test file for you to test your functions on before trying them on the
full data.

- sam.txt: Text fom Dr. Suess’s “Green Eggs and Ham”. Mostly just for fun :)

- normal.txt: 100K sentences from English Wikipedia1.

- simple.txt: 100K sentences from Simple English Wikipedia2, which contains similar
content as English Wikipedia, but are written to be more broadly accessible.

Open up a couple of them and take a look at what’s inside. Each of these files is a text file
with one sentence per line.

– Open up Wing and create a new file. Save this file as assign5.py in your assignment5
directory. Add your name and the assignment number in comments to the top of this file.

Overview

Our goal for this assignment is to write a program that takes in a file and outputs some statistics
about the text in the file. Specifically, the following would be printed out if we ran our program
on the test data:

1https://en.wikipedia.org
2https://simple.wikipedia.org

2

Total sentences: 4

Longest sentence: 6

Shortest sentence: 4

Ave. sentence length: 4.75

Top ten most frequent words

1: this 3

2: sentence 3

3: is 2

4: a 2

5: does 2

6: another 1

7: count 1

8: as 1

9: i 1

10: think 1

Sentence Stats

1. [3 points] Once we have sentences, the first step when dealing with text is often to break
the sentence down into words (aka tokens). Strings have a method called split that splits
up a string into a list based on whitespace characters, however, this is too simple for real
applications. For example, if we split one of the first few sentences from sam.txt:

>>> "I would not, could not, in a car.".split()

[’I’, ’would’, ’not,’, ’could’, ’not,’, ’in’, ’a’, ’car.’]

we see that this doesn’t handle punctuation correctly, i.e. “car” is a word but instead we
receive “car.”.

Write a function called tokenize that takes as input a string (representing a sentence) and
returns the words in the sentence, lowercased. We’ll take a simple approach to this that
captures most of the common cases:

• First split the sentence into “basic words” based on whitespace.

• Then, for each of these basic words, if it ends in one of:

. , ; : ! ?

remove that character from the end of the word.

Hint: Like many of the functions we have seen so far, the easiest way to do this is to iterate
over the “basic words” and build up a new list with your final collection of words.

For example:

3

>>> tokenize("I would not, could not, in a car.")

[’i’, ’would’, ’not’, ’could’, ’not’, ’in’, ’a’, ’car’]

2. [2 points] Write a function called get sentence lengths that takes as input a filename and
returns a list of the number of words in each line/sentence in the file after tokenizing (i.e.
calling tokenize). For example:

>>> get_sentence_lengths("test.txt")

[4, 4, 6, 5]

These correspond to the lengths of the tokenized lists returned by calls for each line in the
file, i.e.

>>> tokenize("This is a sentence.")

[’this’, ’is’, ’a’, ’sentence’]

>>> tokenize("This is another sentence.")

[’this’, ’is’, ’another’, ’sentence’]

>>> tokenize("Does this count as a sentence?")

[’does’, ’this’, ’count’, ’as’, ’a’, ’sentence’]

>>> tokenize("I think, yes, it does.")

[’i’, ’think’, ’yes’, ’it’, ’does’]

3. [2 points] Write a function called print sentence stats that takes a filename (as a string)
as a parameter and prints out four statistics about the sentence in the file: 1) the total number
of sentences, 2) the length of the longest sentence, 3) the length of the shortest sentence, and
4) the average sentence length. Your results be formatted with the text label, followed by a
tab character (\t) and then the number, i.e.:

Total sentences: 4

Longest sentence: 6

Shortest sentence: 4

Ave. sentence length: 4.75

(This is the output from test.txt)

Hint: Use your get sentence lengths function!

Word Stats

The second part of the analysis looks at the frequency of words, specifically, finding the top ten
most frequent words in the corpus. We’re going to accomplish this in a few steps:

– First, we’ll create a dictionary with all of the word frequencies, specifically, where the key is
the word and the value is the frequency of that work in the corpus.

4

– Given this dictionary, we can traverse all of the entries and find the word with the highest
frequency. This will be the first entry in our top ten list.

– To get the next entry, we will delete the entry with the highest frequency from the dictionary.
If we then search again for the word with the highest frequency, we’ll get the second most
frequent word. We’ll repeat this process until we have the top 10 words.

4. [3 points] Write a function called add words to dict that takes two parameters as input:
1) a dictionary where the key is a string (i.e., a word) and the value is an int representing the
current count of that word and 2) a list of strings representing words. The function should
increment the count in the dictionary of each of the words in the list by 1. Specifically, if the
word is not in the dictionary yet, it should add it with the value 1. If it is, it should update
the value to be one larger. Note, this function mutates the dictionary and does not return a
value.

>>> test_dict = {}

>>> add_words_to_dict(test_dict, ["a", "b", "b", "c"])

>>> test_dict

{’a’: 1, ’b’: 2, ’c’: 1}

>>> add_words_to_dict(test_dict, ["a", "c", "c"])

>>> test_dict

{’a’: 2, ’b’: 2, ’c’: 3}

>>> add_words_to_dict(test_dict, ["a"])

>>> test_dict

{’a’: 3, ’b’: 2, ’c’: 3}

5. [3 points] Write a function called get word counts that takes a filename (as a string) as
input and creates a dictionary of the words frequencies in the file. You should tokenize each
line of the file. Hint: Don’t work too hard in this function. Most of the work has already
been done. Specifically, think about how both tokenize and add words to dict can be used
in this function.

>>> get_word_counts("test.txt")

{’this’: 3, ’is’: 2, ’a’: 2, ’sentence’: 3, ’another’: 1, ’does’: 2, ’count’: 1,

’as’: 1, ’i’: 1, ’think’: 1, ’yes’: 1, ’it’: 1}

6. [3 points] Write a function called dict count max that takes a dictionary of word frequencies
as input and returns the word in the dictionary with the highest frequency.

7. [3 points] Write a function called print top ten that takes a filename (as a string) as input
and prints the top ten most frequent words, along with their frequencies (see formatting in
the example above).

Hints:

• Use your get word counts function.

5

• To print the top 10, find the most frequent word using dict count max, print it out,
and then delete it. Repeat this 10 times.

• To remove an item from a dictionary, use the pop method, which takes the key to remove
as input. Here’s an example of using pop in the python shell:

>>> test = {"a":1, "b":10, "c":5}

>>> test

{’a’: 1, ’b’: 10, ’c’: 5}

>>> test.pop("b")

10

>>> test

{’a’: 1, ’c’: 5}

8. [1 points] Finally, write a function called print all stats that takes a filename (as a string)
as input and prints the sentence level and word level stats formatted as seen in the example
above (in the Overview section)

Analysis

Now we can use our functions to analyze a few corpora. At the end of your file, add the following
delimiter:

--

Analysis section

9. [2 points] Run your program on both normal.txt and simple.txt and include their output
as a triple-quoted string. Additionally, include 2-3 sentences analyzing the differences, i.e.
what does the data imply about the different sources? Does it make sense?

10. [3 points] Do one additional analysis of your own choosing that compares the two corpora.
You must write at least one function to help you with this analysis. Include the quantitative
results for both corpora along with 1-2 sentences talking about the results. Here are some
suggestions, though feel free to get creative:

- Vocabulary size, i.e. the total number of unique words.

- Average word length.

- Use of punctuation, e.g. the number of commas per sentence.

When you’re done

Make sure that your program is properly commented:

6

• You should have comments at the very beginning of the file stating your name, course, as-
signment number and the date.

• You should have comments delimiting the two sections.

• Each function should have an appropriate docstring.

• Include other miscellaneous comments to make things clear.

In addition, make sure that you’ve used good style. This includes:

- Following naming conventions, e.g. all variables and functions should be lowercase.

- Using good variable names.

- Good use of booleans. You should NOT have anything like:)

if boolean_expression == True:

or

if boolean_expression == False:

instead use:

if boolean_expression:

or

if not (boolean_expression): # or some other way of negating the expression

- Proper use of whitespace, including indenting and use of blank lines to separate chunks of
code that belong together.

- Make sure that none of the lines are too long, i.e. cross the red line in Wing.

When you’re done

You only need to submit your .py file (and not any of the starter that you downloaded). Submit
your assign5.py file online using the courses submission mechanism under “assign5”.

7

Grading

points

Sentence Stats 7
Word Stats 13
Analysis 5

Comments, style 3

total 28

8

