
CS51A - Assignment 2

Due: Thursday September 19, at 11:59pm

For this assignment, we will be using the turtle graphics module to draw a picture. You will have
two options, a seascape with fish and rocks or a space scene with spaceships and planets (come talk
to me if you have an idea of another scene type that uses similar shapes). Below is an example
completed picture:
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Optional, but strongly encouraged: Introductions

In the next week or two, try and find Dr. Dave and Prof. Osborn outside of the classroom/lab.
Introduce yourself and tell them something interesting about yourself. Office hours are a great time
for this or signup for lunch with them outside their offices.

1 Picture Requirements

I’m going to give you a fair amount of flexibility in what you draw for this assignment. The key
requirements is that your drawing must have:

• at least six fish/ships and six rocks/planets (though if you’d like to have more, that’s fine
too)

• a background (solid is fine, though other things would be great)

• bubbles/stars randomly placed on the background

Before actually coding, it’s a good idea to plan out what you will be creating. On a piece of paper
(ideally graph paper) plan out the design for your drawing. The screen width will be about 840
(ranging from -420 to 420) and the screen height approximately 787 (ranging from -393 to 393).
With these dimensions in mind, plan out on the paper where the different shapes will go, their
sizes, etc. Note that the particular dimensions of the area do differ from computer to computer,
so just work to get a rough outline and placement, but these may change a bit when you actually
program it.

Things to think about:

• What is the x, y coordinate of the upper left hand corner your fish/ships?

• What is the side length of each of the fish/ships?

• What is the x, y coordinate of the top of your rocks/planets?

• How many sides and what are the lengths of the sides of your rocks/planets?

2 Turtle documentation

A crucial programming paradigm is code reuse. Rather than writing your own code, say a turtle

module, you can use one that someone has already written. An important part of coding then is
documentation, both generating it for your programs and being able to understand other people’s
documentation.

The documentation for the turtle module can be found at:
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http://docs.python.org/library/turtle.html

If you scroll down a bit you can see an overview of all of the functions available to you.

To get ready for this assignment, you’re going to need to read a bit more about some of the
functionality of the turtle module. Below are a few methods that may be useful. Click on each of
them in the documentation and make sure you understand what they do as well as what parameters
they take and what, if anything, they return.

• speed

• set heading

• fill color

• begin fill

• end fill

• penup

• pendown

• bgcolor

• goto

• bye

Besides looking at the documentation, another way to get information about a function is with the
help function. The help function takes as an argument the name of a function and outputs the
docstring (i.e. function description). Start up WingIDE then use help to get the documentation
for window width and window height, which also may be useful for this assignment. Remember
you will need to import the turtle module first by typing from turtle import * before trying
to call help on any of the turtle module functions.

3 Style

Before you start coding, a few brief comments on style. We’ve talked about style components in
class and now we’re going to start utilizing these in your assignments. In particular, make sure you
keep the following in mind as you’re writing your program:

• All functions should have appropriate docstrings.

• Comment your code appropriately. Comment complicated parts of the code and include your
name, date, etc. at the top of the file.

• Follow the variable naming conventions discussed in class and use good variable names.

• Use whitespace appropriately to make your program easier to read.

3



4 Basic Shapes

Create a new file in Wing and give it the name assign2.py.

To get started, we’re going to write some functions to make some basic shapes. Make sure that
you have these working before moving on to the next part.

Don’t forget to include the import statement for the turtle module at the top of your file:

from turtle import *

• triangle - Write a method called triangle that draws an equilateral triangle (i.e. a triangle
with all three sides the same length). Your function should take three parameters: the x
and y coordinate where it should be drawn and the length of the side of the triangle. The
triangle should be drawn so that the left edge of the triangle is vertical. For those rusty on
geometry, the interior angles of an equilateral triangle are all 60 degrees, which means the
angle between a straight line drawn from one side and the adjacent side is 120 degrees.

Your x and y coordinates may indicate any part of the triangle (e.g. the top left, the center,
etc.). Pick whichever seems easiest.

For example, here are three triangles of increasing size:

• polygon - Write a method called polygon that draws a polygon. An n-sided polygon has n
equal length edges and the angle between a straight line drawn from one side and the adjacent
side is 360/n. Your function should take 4 parameters: the x and y location of the polygon,
the number of sides, and the length of the each side. The top edge of your polygon should
always be perfectly horizontal. Again, the x and y coordinates may indicate any point on the
polygon, so pick whatever seems easiest.
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Unlike the triangle where you know when you’re writing the function exactly how many sides
the object will have, for the polygon you can’t just hard-code the different line segments.
Instead, you’ll have to use a for loop.

For example, below are some polygons of differing number of sides and size. All can be drawn
with the polygon function.

5 The Background

At this point, you should have two functions written that draw triangles and polygons anywhere
on the screen. We’ll now work on filling in the background.

The key component of the background is randomly spaced circles. Write a function called add circles

that takes as a parameter the number of circles to add and randomly places circles of radius 4
throughout the screen. Some hints for how to do this:

• The circle function draws a circle with a given radius.

• You’ll need to figure out the dimensions of the screen (look at Section 2 again if this doesn’t
seem familiar).

• The randint function from the random module may be useful. To make this available, don’t
forget to include from random import randint at the top of your program.

To check that everything is working right, try adding differing numbers of circles and make sure
that they’re distributed throughout the screen and that the right number are actually being drawn.

Once you’re sure it’s working, add a bit more code to make the size of the circles random. You’ll
have to play with different size ranges to see what looks best. For example, if you look at the
picture on the first page of this handout, you’ll see that the bubbles range in size.

6 Putting it all together

You now have all the components required to put together your final picture. Create a function
called generate picture that draws the entire picture. One way to do this is:
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1. Change the background to the appropriate color.

2. Change your triangle and polygon functions so that they create filled shapes (see the turtle
documentation on how to do this if you don’t remember).

3. Change your add circles method to also draw filled circles.

4. Actually create your picture using your three functions. Your picture should include both
triangles and polygons as well as some randomly filled circles using your add circles function.
I encourage you to get creative here!

5. Change the fill color of the objects to make it look more realistic (e.g. orange fish and brown
rocks).

7 More practice

Write a function called rectangle that draws a colored rectangle. The function should have four
parameters: the x and y location of the rectangle, the height, and the length. The rectangle should
be drawn so that the top edge is flat and represents the “length” side of the rectangle. The rectangle
should be filled in with one of three colors (you can choose the three colors), based on the following
conditions:

color 1 : if the rectangle is a square

color 2 : if the rectangle is longer than it is tall

color 3 : if the rectangle is taller than it is wide

Note that these three cases fully capture all possible cases for a rectangle, so it should be colored
one of these three colors.

For this part, you just need to write the function. If you want to incorporate it into your picture,
great, but it is not required.

8 Extra Credit

You can earn up to 1 point of extra credit on this assignment. Extra credit will be awarded by
including additional elements to your picture. The amount of points given will be assigned based
on creativeness and difficulty of implementation. Here are some examples, but I encourage you to
include your own:

• Instead of circles, write a function called star that draws stars (not asterisks) (must use a
for loop)

• Include other types of objects in your scene
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• Modify the triangle function to draw more interesting triangles, for example isosceles tri-
angles or triangles with fins

To receive extra credit you MUST include in your comments at the top of the program what the
extra credit additions you added were (otherwise, it can be hard to figure out sometimes).

9 Reading

Associated with each class, I have posted readings from the textbook. You should be keeping up
with the reading as we continue through the class. At the bottom of your .py answer the following
questions in a multiline string (i.e., triple quoted string) regarding the reading for 9/12.

• What were the main topics of this reading?

• List three things from the reading you thought were interesting or cool.

• Pick a subject from the reading and give an example (not found in the text, practice problems,
or lecture) to illustrate it.

• What was the most confusing aspect of the reading? (If nothing was confusing, which topic
do you suppose the author thought was most difficult, and why?)

10 When you’re done

When you’re all done you should have a working program that draws your picture. Make sure that
your program is properly commented:

• You should have comments at the very beginning of the file stating your name, course, as-
signment number and the date.

• Each function should have an appropriate docstring

• Other miscellaneous comments to make things clear

In addition, make sure that you’ve used good style. This includes:

- Following naming conventions, e.g. all variables and functions should be lowercase.

- Using good variable names.

- Proper use of whitespace, including indenting and use of blank lines to separate chunks of
code that belong together.
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11 What to submit

For this assignment you should submit two things AT THE SAME TIME (see below):

1. Your assign2.py file.

2. A copy of your final picture. The easiest way is to do a screen capture:

On mac:
Hold command+shift+4 and then while holding these, hit the spacebar (on a mac). If you
then click on the window where your picture is drawn, an image file will be saved on your
desktop entitled “Screen shot...”. You can double-click on this file and then print it. You
may have to click “scale” in the print options to get it to fit on one page. It won’t print it
color if you print in the lab, but this will give us most of the details

On windows:
There are plenty of resources online about how to do a screen capture. One option is:
http://graphicssoft.about.com/cs/general/ht/winscreenshot.htm

Submitting two files: Go to the online course submission and select “assign2”. When prompted
to select your file, you need to select both files. On Mac, you can do this by first clicking one file,
then, holding down the command key, click the second file. On Windows, first select the first file,
then, holding down the control key, click the second file.

8



Grading

points

triangle

equilateral 1
correct x, y 1
correct direction 1

polygon

correct shape 2
varying sizes 1
x, y, direction 1

add circles

correct number of circles 1
covers entire area 1
random locations 2
random sizes 1

generate picture

background color 1
proper fills 1
6+ fish/ships 2
6+ rocks/planets 2

rectangle

correct shape 1
correct coloring 3

Reading response 3

Comments, style 3

extra credit 1

total 28 (+1)
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