
CS51 MACHINE

David Kauchak
CS 51 – Spring 2026

Admin

Checkpoint 1
n Covers material up through this week (lighter coverage of

this week’s material)
n 1 double-side page of notes, hand-written
n will post a few practice problems

Assignment 4

Assignment 5

Examples from this lecture

http://www.cs.pomona.edu/classes/cs51/cs51machine/

http://www.cs.pomona.edu/classes/cs51/cs51machine/

How does a program run on the CPU?

processor

…

registers

How do programs run/execute on a computer?

Assembly code

Python is a “high-level” programming language

high-level programming languages allow you to write
code:

¤ without worrying about hardware-specific details of the
computer (memory, registers, CPU specifics…)

¤ higher-level abstraction, e.g., 2**6 or print()

What actually runs on the processor is assembly code

Assembly code

This week

Introduce the CS51 machine

This is a simplified version of an assembly language

It is a “simulator” that assumes a very simple CPU and
memory setup

Inside the CPU

CPU

processor

…

registers

processor: does the work

registers: local, fast memory slots

CS51 machine (processor)

CPU

processor

registers

ic

r0

r1

r2

r3

instruction counter
(location in memory of the next
 instruction in memory)

holds the value 0 (read only)

- general purpose
- read/write

Memory

RAM
10101011 10001010 00010010 01011010
11001011 00001110 01010010 01010110
10111011 10010010 00000000 01110100
…

Most modern computers use 32-bit (4 byte)
or 64-bit (8 byte) words

address

0
4
8
...

32-bit words

Memory in the CS51 Machine

RAM
10101011 10001010
00010010 01011010
11001011 00001110
…

We’ll use 16-bit words for our model (the
CS51 machine)

address

0
2
4
...

16-bit words

ic

r0

r1

r2

r3

instruction counter
(location in memory of the next
 instruction in memory)

holds the value 0 (read only)

- general purpose
- read/write

When executing a program, the CS51 machine loops over the follow:
- Fetch the value from mem[ic] for use as an instruction
- Increment ic by 2
- Decode the instruction and then execute it

CS51 machine instructions

CPU

processor

registers

What types of operations might
we want to do (think really basic)?

CS51 machine code

Four main types of instructions
1. math/logical
2. branch (conditionals, loops)
3. memory
4. control the machine (e.g., stop it)

instruction name arguments

Math/logical operations

instruction/operation name
(always three characters)

instruction name arguments

Math/logical operations

operation arguments
R = register (e.g. r0)
S = signed number (byte)

instruction name arguments

Math/logical operations

1st R: register where the answer will go
2nd R: register of first operand
3rd S/R: register/value of second operand

operand = input to operator (think, parameters for functions)

instruction name arguments

Math/logical operations

add r1 r2 r3

What does this do?

1st R: register where the answer will go
2nd R: register of first operand
3rd S/R: register/value of second operand

add r1 r2 r3

r1 = r2 + r3

Add contents of registers r2 and
r3 and store the result in r1

1st R: register where the answer will go
2nd R: register of first operand
3rd S/R: register/value of second operand

add r2 r1 10

What does this do?

1st R: register where the answer will go
2nd R: register of first operand
3rd S/R: register/value of second operand

add r2 r1 10

r2 = r1 + 10

Add 10 to the contents of
register r1 and store in r2

1st R: register where the answer will go
2nd R: register of first operand
3rd S/R: register/value of second operand

add r1 r0 8
sub r2 r0 r1
sub r2 r1 r2

What number is in r2?

1st R: register where the answer will go
2nd R: register of first operand
3rd S/R: register/value of second operand

Hint: r0 is always 0

add r1 r0 8
sub r2 r0 r1
sub r2 r1 r2

r1 = 8

r2 = -8, r1 = 8

r2 = 16

1st R: register where the answer will go
2nd R: register of first operand
3rd S/R: register/value of second operand

add r1 r0 6
and r2 r1 10
add r3 r1 r2

What number is in r3?

1st R: register where the answer will go
2nd R: register of first operand
3rd S/R: register/value of second operand

Hint: r0 is always 0

1st R: register where the answer will go
2nd R: register of first operand
3rd S/R: register/value of second operand

r1 = 6 (0110)

r2 = 2, r1 = 6

r3 = 8

add r1 r0 6 (00110)
and r2 r1 10 (01010)
add r3 r1 r2

sto = save data in register TO memory
loa = put data FROM memory into a register

Accessing memory

sto r1 r2 ; store the contents of r1 to mem[r2]
loa r1 r2 ; get data from mem[r2] and put into r1

sto = save data in register TO memory
loa = put data FROM memory into a register

Special cases:
- saving TO (sto) address 0 (r0) prints
- reading from (loa) address 0 (r0) gets input from user

Accessing memory

Basic structure of CS51 program

; great comments at the top!

;

 instruction1 ; comment

 instruction2 ; comment

 ...

 hlt

whitespace before operations/instructions

subtract.a51

Running the CS51 machine

Look at subtract.a51
- load two numbers from the user
- subtract
- print the result

CS51 simulator

memory instruction execution
registers

I/O and running program

1st R: first register for comparison
2nd R: second register in comparison
3rd B: label

Branch instructions

branch (always)
branch if ==
branch if !=
branch if <
branch if >=
branch if >
branch if <=

beq r3 r0 done

What does this do?

1st R: first register for comparison
2nd R: second register in comparison
3rd B: label

Branch instructions

beq r3 r0 done

If r3 = 0, branch to the label “done”
if not (else) ic is incremented as normal to
the next instruction

1st R: first register for comparison
2nd R: second register in comparison
3rd B: label

Branch instructions

ble r2 r3 done

What does this do?

1st R: first register for comparison
2nd R: second register in comparison
3rd B: label

Branch instructions

ble r2 r3 done

If r2 <= r3, branch to the label done

1st R: first register for comparison
2nd R: second register in comparison
3rd B: label

Branch instructions

- Conditionals
- Loops
- Change the order that instructions are

executed

branch (always)
branch if ==
branch if !=
branch if <
branch if >=
branch if >
branch if <=

Branch instructions

CS51 machine execution

A program is a sequence of instructions stored in a memory. To
execute a program, the CS51 machine follows a simple loop:
- Fetch the value from mem[ic] for use as an instruction
- Increment ic by 2
- Decode the instruction and then execute it

Basic structure of CS51 program

; great comments at the top!

;

 instruction1 ; comment

 instruction2 ; comment

 ...

label1

 instruction ; comment
 instruction ; comment

label2

 ...

 hlt

- whitespace before operations/instructions
- labels go here

simple_max.a51

More CS51 examples

Look at max_simple.a51
- Get two values from the user
- Compare them
- Use a branch to distinguish between the two cases

- Goal is to get largest value in r3

- print largest value

if/else

• check the opposite of the if statement
• if it is true, we’ll jump down to else
• if it is not true, we’ll continue into the body of the if part

• At the end of the if block, need to jump to the end, otherwise, we’d
continue onto else

if block

else block

if/else

What does this code do?

if/else

if block

else block

if/else (even_commented.a51)

If/elif/else

if block

else block

elif block

elif block

if/elif/else

What does this code do?

if/elif/else (sign_commented.a51)

while loop

while block

while loop

What does this code do?

while loop (sum_commented.a51)

Instructions to binary

This is my assembly program

CS51 Machine uses 16-bit words

memory address

16-bit value
(displayed as hexadecimal number)

Instructions to binary

What binary number is this?

CS51 Machine uses 16-bit words

memory address

16-bit value
(displayed as hexadecimal number)

Instructions to binary

What binary number is this?

CS51 Machine uses 16-bit words

memory address

16-bit value
(displayed as hexadecimal number)

15 8 0 0

1111 1000 0000 0000

16 bits

Instructions to binary

What binary number is this?

CS51 Machine uses 16-bit words

memory address

16-bit value
(displayed as hexadecimal number)

Instructions to binary

What binary number is this?

CS51 Machine uses 16-bit words

memory address

16-bit value
(displayed as hexadecimal number)

6 10 12 1

0110 1010 1100 0001

Encoding instructions

opcode rX rY rZ auxcode

4 2 2 2 6

16 bits

opcode rX rY argument

4 2 2 8

Two formats for instructions

opcode: specifies what operation
(or category of operation)

r_: specifies a register

auxcode: specifies additional
operations

argument: a number

opcode

opcode instruction

0x0 beq

0x1 bne

0x2 blt

0x3 bge

0x4 cal

0x5 hlt

0x6 arithmetic instruction

…

0xe sto

0xf loa

Instructions to binary

What is this instruction?

15 8 0 0

1111 1000 0000 0000

opcode rX rY argument

4 2 2 8

Instructions to binary

What is this instruction?

15 8 0 0

1111 1000 0000 0000

opcode rX rY argument

4 2 2 8

loa r2 r0

Instructions to binary

What is this instruction?

6 10 12 1

0110 1010 1100 0001

opcode rX rY rZ auxcode

4 2 2 2 6

Instructions to binary

What is this instruction?

6 10 12 1

0110 1010 1100 0001

opcode rX rY rZ auxcode

4 2 2 2 6

arithmetic r2 r2 r3 0x1

arithmetic auxcode

opcode instruction

0x0 add

0x1 sub

0x2

0x3

0x4 and

0x5 orr

0x6

0x7

0x8 logical shift left

0x9 logical shift right

…

Instructions to binary

What is this instruction?

6 10 12 1

0110 1010 1100 0001

opcode rX rY rZ auxcode

4 2 2 2 6

sub r2 r2 r3

instructions to binary

