CS51 MACHINE

Admin

Checkpoint 1

Covers material up through this week (lighter coverage of
this week’s material)

1 double-side page of notes, hand-written

will post a few practice problems

Assignment 4

Assignment 5

Examples from this lecture
I

http: / /www.cs.pomona.edu/classes/cs51 /cs51machine /

http://www.cs.pomona.edu/classes/cs51/cs51machine/

O 00 ~NO UL B WN =

o S S SC R S R SU R
O U A WNRER®

How does a program run on the CPU?

def

def

def

def

add(x, y):
return x + vy

double(num):
return 2 x num

add_then_double(x, y):
added = x + vy

doubled = double(added)
return doubled

absolute(x):
if x < 0:

X = =X

return x

processor

registers

How do programs run/execute on a computer?

Assembly code
Python is a “high-level” programming language

high-level programming languages allow you to write
code:

without worrying about hardware-specific details of the
computer (memory, registers, CPU specifics...)

higher-level abstraction, e.g., 2**6 or print()

What actually runs on the processor is assembly code

O 00 ~NO UL B WN =

o S S SC R S R SU R
O U s WNR®

Assembly code

def

def

def

def

add(x, y):
return x + vy

double(num):
return 2 x num

add_then_double(x, y):
added = x + y

doubled = double(added)
return doubled

absolute(x):
if x < 0:

X ==X

return x

add

doub

abso

else

add_

stac

psh r2
loar2rl4
add r3 r3 r2
pop r2
jmp r2

le

psh r2

add r3 r3 r3
pop r2

jmp r2

lute

psh r2

bge r3 ro else
sub r3 r@ r3

pop r2
jmp r2

then_double
psh r2
loar2rl 4

; setup function call for add

; r3 already has parameter, push 2nd on stack
psh r2

lcw r2 add

cal r2 r2

pop ro@

; answer is in r3, so no need to do anything
lcw r2 double
cal r2 r2

pop r2
jmp r2

dat 100
k

This week

Introduce the CS51 machine

This is a simplified version of an assembly language

It is a “simulator” that assumes a very simple CPU and
memory setup

Inside the CPU

CPU

processor
processor: does the work

registers: local, fast memory slots

registers

CS51 machine (processor)
-

CPU

instruction counter

| ic | (location in memory of the next
instruction in memory)

processor

| rO | holds the value O (read only)

e S L)
e ., s

- p -
N ot - ~ Y ~
e e Y/ B AR
A ST, [AN S r]
L G e "l e S ! o

- general purpose
[I[I[I[I[I | r2 | ~— - read/write

registers | r3 |

—

Memory
—

address 32-bit words

O 10101011 10001010 00010010 01011010

RAM 4 11001011 000011100101001001010110
8 10111011 10010010 O0O0O00000 01110100

Most modern computers use 32-bit (4 byte)
or 64-bit (8 byte) words

Memory in the CS51 Machine

address 16-bit words

O 10101011 10001010
RAM 2 0001001001011010
4 11001011 00001110

We'll use 16-bit words for our model (the
CS51 machine)

When executing a program, the CS51 machine loops over the follow:
- Fetch the value from mem/ic] for use as an instruction

- Increment ic by 2

- Decode the instruction and then execute it

rO

ri

r2

r3

instruction counter

(location in memory of the next
instruction in memory)

holds the value O (read only)

- general purpose
- read/write

CS51 machine instructions
—

CPU

processor

What types of operations might
we want to do (think really basic)?

- " i S » N
\
- A —

e o T e - Todta
&N - PRt VB ey
! - o, E SR Sl
T o o 1 e e A R

"-'. e e - NS ‘"'.; o —

registers

CS51 machine code

Four main types of instructions
math /logical
branch (conditionals, loops)
memory

control the machine (e.g., stop it)

Math /logical operations

instruction name arguments

1

add
sub
and + RRR or RRS
orr
Xor |

Math /logical operations

instruction name arguments

add)
sub
and; RRR or RRS
orr
xorJ

instruction /operation name
(always three characters)

Math /logical operations

instruction name arguments

add
sub
and ' RRR or RRS
orr
xXor

’

-

operation arguments
R = register (e.g. rO)
S = signed number (byte)

Math /logical operations

instruction name arguments
add’
sub
and + RRR or RRS
orr
Xor |
15" R: register where the answer will go
29 R: register of first operand

39S/R: register/value of second operand

operand = input to operator (think, parameters for functions)

add r1 r2 r3

What does this do?¢

15" R: register where the answer will go
2nd R: register of first operand
39S/R: register/value of second operand

add r1 r2 r3

rl =r2 +r3

Add contents of registers r2 and
r3 and store the result in rl

15" R: register where the answer will go
29 R: register of first operand
39S/R: register/value of second operand

addr2rl1 10

What does this do?¢

15" R: register where the answer will go
2nd R: register of first operand
39S/R: register/value of second operand

addr2rl1 10

r2=r1+10

Add 10 to the contents of
register r1 and store in r2

15" R: register where the answer will go
29 R: register of first operand
39S/R: register/value of second operand

add r1 rO 8 Hint: rO is always O
sub r2 rO r1
subr2rl r2

What number is in r2¢

15" R: register where the answer will go
29 R: register of first operand
39S/R: register/value of second operand

addr1 rO 8 rl =38

sub r2 rO r1 r2=-8,r1 =8
subr2rl r2 r2=16
15" R: register where the answer will go
2nd R, register of first operand

39S/R: register/value of second operand

add r1 rO 6 Hint: rO is always O
andr2rl1 10
add r3 r1 r2

What number is in r3¢

15" R: register where the answer will go
29 R: register of first operand
39S/R: register/value of second operand

addr1 rO 6 (0O0110) r1 =6(0110)
and r2r1 10 (O1010) r2=2,r1 =6

add r3 r1 r2 r3 =8
15" R: register where the answer will go
29 R: register of first operand

39S/R: register/value of second operand

Accessing memory
—

sto} RRS
loa

sto = save data in register TO memory
loa = put data FROM memory into a register

stor]l r2 ; store the contents of r1 to mem[r2]
loa r1 r2 ; get data from mem[r2] and put into r1

Accessing memory
—

sto} RRS
loa

sto = save data in register TO memory
loa = put data FROM memory into a register

Special cases:
- saving TO (sto) address O (rO) prints
- reading from (loa) address O (rO) gets input from user

Basic structure of CS51 program
T

; great comments at the top!

.
14

instructionl ; comment
instruction? ; comment
hlt

L_1__J

whitespace before operations /instructions

subtract.a51
I

; A simple CS51 Machine program that subtracts
; two numbers.

loa r2 ro ; get first value
loa r3 ro ; get second value
sub r2 r2 r3 ; subtract them
sto r2 re ; print result

hlt ; quit

Running the CS51 machine

I =
Look at subtract.a51

- load two numbers from the user
- subtract

- print the result

CS51 simulator
I

instruction execution

memory
registers

/O and running program

CS51 Machine

The CS51 Machine

Instruction View
0000 : I/0

Program: |subtract Load Reset 0002 : f800 loa
0004 : fce@® 1loa
Status: 0006 : 6acl sub
CS51 halted normally after 5 steps. 0008 : €800 sto
P00a : 5000 hlt

IC : 0eeea 000c : 0000

000e : 0000

RO : 0000 0010 : 0000

0012 : 0000

R1 : 0000 0014 : 0000

0016 : 0000

R2 : 0008 0018 : 0000

001a : 0000

R3 : 0002 001c : 0000

001le : 0000

: 0000

: 0000

: 0000

: 0000

: 0000

: 0000

: 0000

: 0000

: 0000

Branch instructions

branch (always) brs B
branch if == beq’
branch if |= bne
branch if < blt
branch if >= bge - RRB
Eranc: |: Z_ bgt
rancn i — b.leJ
15" R: first register for comparison
29 R: second register in comparison

3rd B, label

Branch instructions

beq r3 rO done

What does this do?

15" R: first register for comparison
29 R: second register in comparison

3rd B, label

Branch instructions

beq r3 rO done

If r3 = 0, branch to the label “done”
if not (else) ic is incremented as normal to
the next instruction

15" R: first register for comparison
29 R: second register in comparison

3rd B, label

Branch instructions
ble r2 r3 done

What does this do?

15" R: first register for comparison
29 R: second register in comparison

3rd B, label

Branch instructions
ble r2 r3 done

If r2 <= r3, branch to the label done

15" R: first register for comparison
29 R: second register in comparison

3rd B, label

Branch instructions

branch (always) brs B
branch if == beq]
branch if 1= bne
branch if < blt
branch if >= bge - RRB
branch if > bgt
branch if <= ble

- Conditionals

- Loops

- Change the order that instructions are
executed

CS51 machine execution

A program is a sequence of instructions stored in a memory. To
execute a program, the CS51 machine follows a simple loop:

- Fetch the value from mem|ic] for use as an instruction

- Increment ic by 2

- Decode the instruction and then execute it

Basic structure of CS51 program

; great comments at the top!

.
14

instructionl ; comment

instruction? ; comment
labell

instruction ; comment

instruction ; comment
label?

hlt

L_1__J

- whitespace before operations/instructions
- labels go here

simple_max.a5
I

; simple program to compute the max of
; two numbers

loa r2 ro ; get the first value and put it in r2
loa r3 ro ; get the second value and put it in r3

bge r3 r2 done ; check if r3 >= r2, if so jump to done

add r3 r2 0 ; r3 =r2, (r2 is larger so copy it)
done

sto:r3 ro

hlt

More CS51 examples

Look at max_simple.aS]1
Get two values from the user
Compare them

Use a branch to distinguish between the two cases

Goal is to get largest value in r3

print largest value

if /else

bxx _ _ else ; not of if statement
if block { ; body of if

brs end ; jump to the end of if/else

else
«aa ; body of else

else block {
end
[... ; instructions after if/else

* check the opposite of the if statement
e if itis true, we'll jump down to else
* if it is not true, we’ll continue into the body of the if part
* At the end of the if block, need to jump to the end, otherwise, we'd
continue onto else

if /else
D

loa r3 ro

and r2 r3 1

beq r2 r@ else

add r3 ro 47

brs end What does this code do?

else
add r3 ro -47
end

sto r3 ro
hlt

if /else
D

loa r3 ro

and r2 r3 1
beq r2 r@ else
add r3 ro 47 - if block
brs end
else
add r3 ro -47 } else block
end

sto r3 ro
hlt

if /else (even_commented.a51)
N

loa r3 ro@ ; get a value from the user

and r2 r3 1 ; get the low-order bit into r2

beq r2 ro else ; branch to else if even

add r3 ro 47 ; put 47 in r3

brs end ; go to the end of the if/else
else

add r3 r@ -47 ; put =47 in r3
end

sto r3 ro ; print out r3

hlt

If /elif /else

bxx _ _ nextif ; not of if statement
- ; body of if

if block

-{: brs end ; jump to the end of if/elif/else
nextif

bxx _ _ nextif2 ; not of elif statement
. ces ; body of elif
elif block { g

brs end
nextif2

bxx _ _ else ; nhot of elif statement

. “es ; body of elif
elif block

else block ; body of else

| . ; instructions after if/else

if /elif /else

loa r3 ro

bge r3 r@ nextif
add r3 ro -1
brs end
nextif
bgt r3 ro else
add r3 ro 0
brs end
else
add r3 ro 1

What does this code do?

end

sto r3 ro@
hlt

if /elif /else (sign_commented.a51)
N

loa r3 ro ; get a number from the user
bge r3 r@ nextif ; if r3 <0
add r3 ro -1 ; r3=-1
brs end
nextif
bgt r3 ro else ; if r3 ==
add r3 ro 0 ; r3 =20
brs end
else
add r3 ro 1 ; r3 is positive: r3 =1
end
sto r3 r@ ; print out r3

hlt

while loop
—

start
bxx _ _ end ; not of the while condition
aaa ; body of the while loop
while block {
brs start
end

; after the while loop

while loop
—

loa r3 r@

add r2 ro 0
start
ble r3 r@ end
add r2 r2 r3 What does this code do?
sub r3 r3 1
brs start
end

sto r2 ro
hlt

while loop (sum_commented.a51)
N

loa r3 ro ; get a number from the user
add r2 ro 0 ; r2 =20
start
ble r3 r@ end ; while r3 > 0
add r2 r2 r3 ; r2 4= r3
sub r3 r3 1 ; r3—=1
brs start
end
sto r2 ro ; print out r2

hlt

memory address

Instructions to binary

CS51 Machine uses 16-bit words

Data View

0000 :
0002 :
0004 :
0006 :
0008 :
000a :

1/0

800
fcoo
bacl
e800
5000

16-bit value

This is my assembly program

(displayed as hexadecimal number)

Instructions to binary

CS51 Machine uses 16-bit words

Data View
0000 : I1/0
0002 : fggg What binary number is this?
0004 : fcoo
0006 : bacl
0008 : e800
000a : 5000

\

16-bit value
(displayed as hexadecimal number)

memory address

Instructions to binary
—

CS51 Machine uses 16-bit words

Data View

0000 :
0002 :
0004 :
0006 :
0008 :
000a :

memory address

1/0

800
fcoo
bacl
e800
5000

16-bit value

What binary number is this?

15 8 O O
1111 1000 0000 0000

16 bits

(displayed as hexadecimal number)

Instructions to binary

CS51 Machine uses 16-bit words

Data View
0000 : 1/0

0002 : fggg What binary number is this?
0004 : fcoo

0006 : 6acl

0008 : e800

000a : 5000

\

16-bit value
(displayed as hexadecimal number)

memory address

Instructions to binary
—

CS51 Machine uses 16-bit words

Data View

0000 :
0002 :
0004 :
0006 :
0008 :
000a :

memory address

1/0

800
fcoo
bacl
e800
5000

16-bit value

What binary number is this?

6 10 12 1
O110 1010 1100 0001

(displayed as hexadecimal number)

Encoding instructions

Two formats for instructions

opcode: specifies what operation
(or category of operation)

r_: specifies a register

auxcode: specifies additional

operations

argument: a number

opcode

opcode

2 2 2 6

X! rY! rZ auxcode

16 bits
2 2 8
rX! [rY argument

opcode

opeodeLinowustion

0x0 beq

Ox1 bne

Ox2 blt

Ox3 bge

Ox4 cal

Ox5 hlt

Ox6 arithmetic instruction
Oxe sto

Oxf loa

Instructions to binary

Data View
0000 : I/0
0002 : |f800
0004 : fcoo
9006 : 6bacl
0008 : e800
000a : 5000

What is this instruction?

15 8 O O
1111 1000 0000 0000

4 2 2 8

| opcode | | argument

Instructions to binary

Data View
0000 : I/0
0002 : |f800
0004 : fcoo
9006 : 6bacl
0008 : e800
000a : 5000

What is this instruction?

15 8 O O
1111 1000 0000 0000

4 2 2 8

| opcode || argument |
loa r2 10

Instructions to binary
I

What is this instruction?

Data View

0000 : I/0

0002 : 800 6 1o 1z
0004 : fcoo OT10 1010 1100 OOOT
0006 : 6acl

0008 : €800 4 2 2 2

000a : 5000 | opcode | |c|uxcode

Instructions to binary
I

What is this instruction?

Data View

0000 : I/0

0002 : 800 6 1012 !
0004 : fcoo O110 1010 1100 0001
0006 : 6acl

0008 : e800 4 2 2 2 6
000a : 5000 " opcode | |quxcode|

arithmetic r2 r2 r3 Ox1

arithmetic auxcode
e

opeodeingwucton

0x0 add

Ox1 sub

Ox2

Ox3

Ox4 and

0x5 orr

Ox6

Ox7

Ox8 logical shift left

0x9 logical shift right

Instructions to binary
I

What is this instruction?

Data View

0000 : I/0

0002 : 800 6 1012 !
0004 : fcoo O110 1010 1100 0001
0006 : 6acl

0008 : e800 4 2 2 2 6
000a : 5000 " opcode | |quxcode|

sub r2 2 r3

instructions to binary

Data View
0000 :
0002 :
0004 :
0006 :
0008 :
000a :

I1/0

800
fcoo
bacl
e800
5000

Instruction View
0000 :
0002 :
0004 :
0006 :
0008 :
000a :

1/0

f800 loa r2 ro

fcoo
bacl
e800
5000

loa r3 ro
sub r2 r2 r3
sto r2 ro
hlt

