
Memory
CS51 – Spring 2026

Computer Systems

Administrative

Assignment 3

Assignment 4

• Released

• Don’t forget to do pre-lab

Lab tomorrow

2

2-bit decoder recap

What does a 2-bit decoder do?

2-bit decoder recap

Sends ‘1’ along one input line according to d1 d0

enable=0 turns off all lines

d1 d0 out0 out1 out3 out3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

3-bit decoder

5

• 𝑑! acts as the enable bit to two decoders.

• When 𝑑! is 0, the top decoder is activated,
sending output to one of t0xx.

• When 𝑑! is 1, the bottom decoder is
activated, sending output to one of t1xx.

Inputs Outputs

𝑑! 𝑑" 𝑑# 𝑡### 𝑡##" 𝑡#"# 𝑡#"" 𝑡"## 𝑡"#" 𝑡""# 𝑡"""
0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

Decoder application example

6

How do clocks like this work?

Decoding 7-segment displays

7

c

d

g
f

e

b a

c

d

g

f

e

b a

c

d

g
f

e

b a

c

d

g

f

e

b a
c

d

g
f

e

b a

c

d

g
f

e

b a d

g
f

e

b a

c

d

g
f

e

b a

c

d

g
f

e

b a

c

d

g
f

e

b a

c

d

g
f

e

b a

c

7 segments, labeled a to g

Different combinations of these segments, generate the digits 0-9

7-segment display

8

Number to display circuit

c

d

g
f

e

b a
a b c d

e f g

hardware component
with 7 inputs

7-segment display

9

Number to display circuit

c

d

g
f

e

b a

7
c

d

g
f

e

b a

a = 0
b = 0
c = 1
d = 1
e = 0
f = 0
g = 1

hardware component
with 7 inputs

a b c d

e f g

7-segment displays in clocks

10

Digit
Illuminated segments

a b c d e f g

0 x x x x x x

1 x x

2 x x x x x

3 x x x x x

4 x x x x

5 x x x x x

6 x x x x x x

7 x x x

8 x x x x x x x

9 x x x x x

c

d

g

f

e

b a

c

d

g
f

e

b a

c

d

g

f

e

b a
c

d

g
f

e

b a

c

d

g
f

e

b a d

g
f

e

b a

c

d

g
f

e

b a

c

d

g
f

e

b a

c

d

g
f

e

b a

c

d

g
f

e

b a

c

7-segment display

11

Number to display circuit

c

d

g
f

e

b a
a b c d

e f g

hardware component
with 7 inputs

How many binary
inputs do we need
for the numbers 0-9?

Decoding 7-segment displays in clocks

12

Input Digit
Illuminated segments

a b c d e f g

0000 0 x x x x x x

0001 1 x x

0010 2 x x x x x

0011 3 x x x x x

0100 4 x x x x

0101 5 x x x x x

0110 6 x x x x x x

0111 7 x x x

1000 8 x x x x x x x

1001 9 x x x x x

c

d

g

f

e

b a

c

d

g
f

e

b a

c

d

g

f

e

b a
c

d

g
f

e

b a

c

d

g
f

e

b a d

g
f

e

b a

c

d

g
f

e

b a

c

d

g
f

e

b a

c

d

g
f

e

b a

c

d

g
f

e

b a

c

Our friend the decoder

13

4-input bits

d
ec

o
d

er

2-bit decoder: 4 output lines
3-bit decoder: 8 output lines

How many output lines?

Our friend the decoder

14

4-input bits

d
ec

o
d

er

2-bit decoder: 4 output lines
3-bit decoder: 8 output lines

16 output lines: exactly 1 will
be activated depending on the
input

Our friend the decoder

15

Input Digit
Illuminated segments

a b c d e f g

0000 0 x x x x x x

a b c d

e f g

0000

d
ec

o
d

er

c

d

g
f

e

b a

0000 line will be 1

all others will be 0

Our friend the decoder

16

Input Digit
Illuminated segments

a b c d e f g

0000 0 x x x x x x

a b c d

e f g

0000

d
ec

o
d

er

c

d

g
f

e

b a

0000 line will be 1

all others will be 0

c

d

g

f

e

b a

How do we get it to display a 0?

Our friend the decoder

17

Input Digit
Illuminated segments

a b c d e f g

0000 0 x x x x x x

a b c d

e f g

0000

d
ec

o
d

er

c

d

g
f

e

b a

0000 line will be 1

all others will be 0

c

d

g

f

e

b a

Connect the 0000 line to: b c d e f g

When the line is active those segments will illuminate

When it’s not active, no display

Our friend the decoder

18

Input Digit
Illuminated segments

a b c d e f g

0001 1 x x

a b c d

e f g

0001

d
ec

o
d

er

c

d

g
f

e

b a

0001 line will be 1

all others will be 0

How do we get it to display a 1?

c

d

g
f

e

b a

Our friend the decoder

19

Input Digit
Illuminated segments

a b c d e f g

0001 1 x x

a b c d

e f g

0001

d
ec

o
d

er

c

d

g
f

e

b a

0001 line will be 1

all others will be 0

c

d

g
f

e

b a

Connect the 0001 line to: d g

When the line is active those segments will illuminate

When it’s not active, no display

Our friend the decoder

20

Input Digit
Illuminated segments

a b c d e f g

0000 0 x x x x x x

0001 1 x x

a b c d

e f g

d
ec

o
d

er

c

d

g
f

e

b a0001 line
4-input bits

0000 line
Both of these
lines want to
connect to d

How do we
do this?
Hint: gate??

Our friend the decoder

21

Input Digit
Illuminated segments

a b c d e f g

0000 0 x x x x x x

0001 1 x x

a b c d

e f g

d
ec

o
d

er

c

d

g
f

e

b a0001 line
4-input bits

0000 line

Since only one line will be
active at a time, use OR gate

22

Input Digit
Illuminated segments

a b c d e f g

0000 0 x x x x x x

0001 1 x x

0010 2 x x x x x

0011 3 x x x x x

0100 4 x x x x

0101 5 x x x x x

0110 6 x x x x x x

0111 7 x x x

1000 8 x x x x x x x

1001 9 x x x x x

c
d

g
f

e

b a
c

d

g
f

e

b a

c
d

g
f

e

b a
c

d

g
f

e

b a

c
d

g
f

e

b a

d

g
f

e

b a

c
d

g
f

e

b a
c

d

g
f

e

b a
c

d

g
f

e

b a

c
d

g
f

e

b a

c

A 7-segment display in Logisim
a

b

c

d

e

f

g

A 7-segment display in Logisim

Check it out!

23

24

Input Chara
cter

Illuminated segments

a b c d e f g

0000 0 x x x x x x

0001 1 x x

0010 2 x x x x x

0011 3 x x x x x

0100 4 x x x x

0101 5 x x x x x

0110 6 x x x x x x

0111 7 x x x

1000 8 x x x x x x x

1001 9 x x x x x

PRACTICE TIME – Expanding to 16 characters
c

d

g

f

e

b a

c

d

g
f

e

b a

c

d

g

f

e

b a
c

d

g
f

e

b a

c

d

g
f

e

b a d

g
f

e

b a

c

d

g
f

e

b a

c

d

g
f

e

b a

c

d

g
f

e

b a

c

d

g
f

e

b a

c

c
d

g
f

e

b a
c

d

g
f

e

b a

c
d

g
f

e

b a
c

d

g
f

e

b a

c
d

g
f

e

b a
c

d

g
f

e

b a

Imagine that the 7-segment
display we have built so far is
expanded to include 16
characters, the existing 10
digits, and A-F, as depicted
here to differentiate among
them.

How will the design of the
circuit change on Logisim-
Evolution?

25

Input Character
Illuminated segments

a b c d e f g

0000 0 x x x x x x

0001 1 x x

0010 2 x x x x x

0011 3 x x x x x

0100 4 x x x x

0101 5 x x x x x

0110 6 x x x x x x

0111 7 x x x

1000 8 x x x x x x x

1001 9 x x x x x

1010 A x x x x x x

1011 B x x x x x

1100 C x x x

1101 D x x x x x

1110 E x x x x x

1111 F x x x x

ANSWER– Expanding to 16 characters

c
d

g
f

e

b a
c

d

g
f

e

b a

c
d

g
f

e

b a
c

d

g
f

e

b a

c
d

g
f

e

b a
c

d

g
f

e

b a

Expanded table:

Circuit in Logisim-Evolution is
expanded to include all outputs
of decoders connected to 6
additional or gates

Combinational circuits

26

All circuits we have seen have been combinational: their output depends
on the present inputs and there is no notion of memory of past inputs.

combinational circuits perform arithmetic and logical operations,
transmit data, or convert code. So far, we have seen for

• Arithmetic and logical operations: logic circuits and half/full/and ripple-
carry adders

• Transmit data: decoders (and we will see multiplexers in the next
assignment)

• Convert code: 7-segment display decoders

Computer simplified

hard drive

media drive

CPU RAM

“the computer”

display

network

input devices

Inside the CPU: Arithmetic Logic Unit (ALU)

28

Performs arithmetic and
logical operations

Arithmetic: add, subtract,
multiply, …

Logical: AND, OR, shift

Inside the CPU: Arithmetic Logic Unit (ALU)

29

Performs arithmetic and
logical operations

Arithmetic: add, subtract,
multiply, …

Logical: AND, OR, shift

Opcode specifies what operation
(encoded in binary)

Inside the CPU: Arithmetic Logic Unit (ALU)

30

Performs arithmetic and
logical operations

Arithmetic: add, subtract,
multiply, …

Logical: AND, OR, shift

Opcode specifies what operation
(encoded in binary)

Where do the numbers come from?

Inside the CPU

CPU
processor

…

registers

Floating-point unit (FPU)

…

registers: local, fast memory slots

Memory hierarchy

32

processor

…

registers

RAM

hard drive

Why do we have these different types of memory?

Memory speed

operation access time times slower
than register
access

for
comparison…

register 0.3 ns 1 1 s
RAM 120 ns 400 6 min
Hard disk (SSD) 1ms ~million 1 month

Hard disk (HDD) 10ms ~million 10 months
google.com 0.4s ~billion 30 years

Memory

RAM 010101111000101000010010 …

What is a byte? ?

Memory

RAM 01010111 10001010 00010010 …

byte = 8 bits
byte is abbreviated as B

My laptop has 64GB (gigabytes) of memory. How many bits is that?

Units of memory

36

Bit:

Nibble:

Byte: 8 bits

Kilobyte (KB):

Megabyte (MB)

Gigabyte (GB):

Terabyte (TB):

Units of memory

37

Bit: the smallest unit of memory.

Nibble: 4 bits, half a byte

Byte: 8 bits, the basic unit of measuring memory. Notation is B, e.g., 8B is 8 bytes or 64 bits.

Kilobyte (KB): 10! bytes = 1,000 bytes. (thousand bytes)

• Kibibyte = 210 bytes = 1024 bytes (approximately a thousand bytes)

Megabyte (MB): 10!	Kilobytes = 1,000,000 bytes. (million bytes)

Gigabyte (GB): 10!	Megabytes = 1,000,000,000 bytes. (billion bytes)

Terabyte (TB): 10!	Gigabytes = 1,000,000,000,000 bytes. (quadrillion bytes)

Memory

RAM 01010111 10001010 00010010 …

byte = 8 bits
byte is abbreviated as B

My laptop has 64GB (gigabytes) of memory. How many bits is that?

Memory

RAM 01010111 10001010 00010010 …

byte = 8 bits
byte is abbreviated as B

64GB = 64,000,000,000 = 64 billion bytes = 512 billion bits

Memory hierarchy

40

processor

…

registers

RAM

hard drive

Capacity: hundreds of registers Gigabytes Terabytes

Memory

RAM
01010111
10001010
0001001
01011010
…

Memory is byte addressable

address

0
1
2
3
…

Memory

RAM
01010111
10001010
0001001
01011010
…

Memory is organized into
“words”, which is the most
common functional unit

address

0
1
2
3
…

Memory

RAM
10101011 10001010 00010010 01011010
11001011 00001110 01010010 01010110
10111011 10010010 00000000 01110100
…

Most modern computers use 32-bit
(4 byte) or 64-bit (8 byte) words

address

0
4
8
...

32-bit words

Memory capacity

Memory is commonly byte addressable (i.e., we can ask for a
specific byte)

32-bit processors access memory locations using a 32-bit
number

What is the largest a 32-bit, byte-addressable memory can be?
Hint: how many unique addresses are possible?

44

Memory capacity

With 32 bits, we can represent 232 unique numbers.

2!" 	= 2"2#$2#$2#$ ≈ 4 ∗ 10!10!10! = 4 ∗ 10%

We could therefore address about 4 billion bytes, which is 4GB

45

Memory capacity

64-bit processors access memory locations using a 64-bit
number

What is the largest a 64-bit, byte-addressable memory can be?
Hint: how many unique addresses are possible?

46

Memory capacity

With 64 bits, we can represent 232 unique numbers.

2&' 	= 2'2#$2#$2#$2#$2#$2#$ ≈ 16 ∗ 10#(

KB, GB, TB, Petabyte, Exabyte

16 Exabytes = 16 * 106 TB = 16 Million Terabytes

47

Memory implemented

48

Memory is generally
implemented as a grid/matrix
of bytes

16
 r

ow
s

16 columns

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

Memory implemented

49

Memory is generally
implemented as a grid/matrix
of bytes

16
 r

ow
s

16 columns

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

How much memory is this?

Memory implemented

50

Memory is generally
implemented as a grid/matrix
of bytes

16
 r

ow
s

16 columns

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

16	 ∗ 8 = 2& ∗ 2& = 2' = 256 bytes

Memory implemented

51

16
 r

ow
s

16 columns

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

We can access a given by via
a row index and a column
index

What row/column would this
entry be? (Assuming indices
start at 0)

Memory implemented

52

16
 r

ow
s

16 columns

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

We can access a given by via
a row index and a column
index

row = 4, column = 3

Memory implemented

53

16
 r

ow
s

16 columns

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

We can access a given by via
a row index and a column
index

Everything is binary:
how many bits do we
need to specify the
row and column?

Memory implemented

54

16
 r

ow
s

16 columns

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

We can access a given by via
a row index and a column
index

4 bits each for a total
of 8 bits

<8-bit memory address>

4 bits for row 4 bits for column

Memory implemented

55

16
 r

ow
s

16 columns

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

We can access a given by via
a row index and a column
index

What would be this
memory address in
binary?

<8-bit memory address>

4 bits for row 4 bits for column

Memory implemented

56

16
 r

ow
s

16 columns

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

We can access a given by via
a row index and a column
index

0100 0011

row column

Memory implemented

57

16
 r

ow
s

16 columns

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

We can access a given by via
a row index and a column
index

What would be this
memory address in
binary?

<8-bit memory address>

4 bits for row 4 bits for column

Memory implemented

58

16
 r

ow
s

16 columns

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

We can access a given by via
a row index and a column
index

Note we use unsigned
numbers

1101 0100

row column

Quick aside

4-bit decoder

59

4 bits decoder How many lines out?

Quick aside

4-bit decoder

60

4 bits decoder
16 lines out, exactly one
line will be 1

Quick aside: multiplexer

16:1 multiplexer

61

4 bits decoder How many lines out?

Quick aside: multiplexer

62

4:1 multiplexer

4 inputs

2 inputs to
“select”
which line

Quick aside: multiplexer

63

4:1 multiplexer

4 inputs

0
 0

Quick aside: multiplexer

64

4:1 multiplexer

4 inputs

1 0

Quick aside: multiplexer

65

16:1 multiplexer

16 inputs

4 inputs to
“select”
which line

From addresses to actual memory cells

66

The decoder will be responsible for
taking the 4-bits of the row address
and mapping it to one of the 16 rows.

The multiplexer will be responsible for
taking the 4-bits of the column address
as selection lines and to map to a
single column.

Column address multiplexer
c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

4-bit
column
address

4-bit
row

address

R
ow

 a
d

d
re

ss
 d

ec
o

d
er

How do we store bits?

67

Anything unusual about this circuit?

Case I: 𝑹 = 𝟏, 𝑺 = 𝟎

68

Case Input Output

𝑆 𝑅 𝑄 𝑄’

IV 0 0

I 0 1

II 1 0

III 1 1

What will be the output?

X Y X ⊽ Y

0 0 1

0 1 0

1 0 0

1 1 0

0

1

Case I: 𝑹 = 𝟏, 𝑺 = 𝟎

69

Case Input Output

𝑆 𝑅 𝑄 𝑄’

IV 0 0

I 0 1 0 1

II 1 0

III 1 1

What will be the output?

X Y X ⊽ Y

0 0 1

0 1 0

1 0 0

1 1 0

0
0

1
10

1

Case II: 𝑹 = 𝟎, 𝑺 = 𝟏

70

Case Input Output

𝑆 𝑅 𝑄 𝑄’

IV 0 0

I 0 1 0 1

II 1 0

III 1 1

What will be the output?

X Y X ⊽ Y

0 0 1

0 1 0

1 0 0

1 1 0

1

0

Case II: 𝑹 = 𝟎, 𝑺 = 𝟏

71

Case Input Output

𝑆 𝑅 𝑄 𝑄’

IV 0 0

I 0 1 0 1

II 1 0 1 0

III 1 1

What will be the output?

X Y X ⊽ Y

0 0 1

0 1 0

1 0 0

1 1 0

1
1

0
01

0

Case IV: 𝑹 = 𝟎, 𝑺 = 𝟎

72

Case Input Output

𝑆 𝑅 𝑄 𝑄’

IV 0 0

I 0 1 0 1

II 1 0 1 0

III 1 1

What will be the output?

X Y X ⊽ Y

0 0 1

0 1 0

1 0 0

1 1 0

1

00

0

Case IV: 𝑹 = 𝟎, 𝑺 = 𝟎

73

Case Input Output

𝑆 𝑅 𝑄 𝑄’

IV 0 0

I 0 1 0 1

II 1 0 1 0

III 1 1

What will be the output?

X Y X ⊽ Y

0 0 1

0 1 0

1 0 0

1 1 0

1

00

0

0

1

nothing changes

Case IV: 𝑹 = 𝟎, 𝑺 = 𝟎

74

Case Input Output

𝑆 𝑅 𝑄 𝑄’

IV 0 0

I 0 1 0 1

II 1 0 1 0

III 1 1

What will be the output?

X Y X ⊽ Y

0 0 1

0 1 0

1 0 0

1 1 0

0

10

0

Case IV: 𝑹 = 𝟎, 𝑺 = 𝟎

75

Case Input Output

𝑆 𝑅 𝑄 𝑄’

IV 0 0

I 0 1 0 1

II 1 0 1 0

III 1 1

What will be the output?

X Y X ⊽ Y

0 0 1

0 1 0

1 0 0

1 1 0

0

10

0 0

1

nothing changes

Case IV: 𝑹 = 𝟎, 𝑺 = 𝟎

76

0

10

0 0

1

1

00

0

0

1

0

10

0

1

00

0

SR-latch

77

Case Input Output

𝑆 𝑅 𝑄 𝑄’

IV 0 0 𝑄_𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑄′_𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠

I 0 1 0 1

II 1 0 1 0

III 1 1

Hold current state

Reset: Q = 0

Set: Q = 1
messy… not allowed

Case III: 𝑹 = 𝟏, 𝑺 = 𝟏

78

Case Input Output

𝑆 𝑅 𝑄 𝑄’

IV 0 0 𝑄_𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑄′_𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠

I 0 1 0 1

II 1 0 1 0

III 1 1

What will be the output?

X Y X ⊽ Y

0 0 1

0 1 0

1 0 0

1 1 0

Case III: 𝑹 = 𝟏, 𝑺 = 𝟏

79

Case Input Output

𝑆 𝑅 𝑄 𝑄’

IV 0 0 𝑄_𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑄′_𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠

I 0 1 0 1

II 1 0 1 0

III 1 1 0 0

What will be the output?

X Y X ⊽ Y

0 0 1

0 1 0

1 0 0

1 1 0

1

1

0

0 0

0

Case I: 𝑹 = 𝟎, 𝑺 = 𝟎

80

Case Input Output

𝑆 𝑅 𝑄 𝑄’

IV 0 0

I 0 1 0 1

II 1 0 1 0

III 1 1 0 0

What will be the output?

X Y X ⊽ Y

0 0 1

0 1 0

1 0 0

1 1 0

0

0

SR-latch - Abstraction

81

• As an application of abstraction, instead of seeing the full
circuit on the right, you might encounter the following symbol
for SR-latches:

𝑅

𝑆

𝑄

𝑄’

Latches for memory

82

Latches can store 1 bit

Other latches exists (e.g., D latch)

Other circuits that store 1 bit (e.g., flip-flops)

Can combine these to make memory (registers, RAM)

Latches for memory

83

Latches can store 1 bit

Other latches exists (e.g., D latch)

Other circuits that store 1 bit (e.g., flip-flops)

Can combine these to make memory (registers, RAM)

Why do we have hard drives?

Latches for memory

84

When power goes off, we lose what we stored!

