Computer Systems

CS51 - Spring 2026

Administrative

Assignment 3

Assignment 4
 Released
« Don’t forget to do pre-lab

Lab tomorrow

2-bit decoder recap

dl

do

enable

11 10 01 00

What does a 2-bit decoder do?

2-bit decoder recap

dl

do

enable

Sends 1" along one input line according to d; d,

enable=0 turns off all lines

3-bit decoder

two bit decoder 1

y two_bit decoder 0 2,t000
e d1 t00
— do t01 [To>t001
L . bl t10
enaple 0 t010

two_bit_decoder_with.. t0 11

_I—I%uoo

9 dl
P d0
L enable

t00
01
t10
tll

| L 2>t101

T L{ % >t110

two_bit_decoder_with. t1 11

Ldz | i dotooo [tonr L 010 four {100 tuos L taio |t |
0O O 0 1 0 0 0] 0 0 0 0

0
0
0
1
1
1
1

* d, acts as the enable bit to two decoders.

4~ 4 0 0O = 2 O
-~ O = O = O =
O 0O o oo o o
©O 0O o0 oo o =~
©O 0O 00 o =~ o
©O O o o -~ o o
O 0o -~ 0o o o
©O 0o - 0 o0 o o
©O - 0o oo o o
- 0O 0 oo o o

« When d, is O, the top decoder is activated,

sending output to one of tOxx.

* When d, is 1, the bottom decoder is

activated, sending output to one of t1xx.

Decoder application example

How do clocks like this work?

Decoding 7-segment displays

C

bITId
//\\\
G 3465789

7 segments, labeled ato g

Different combinations of these segments, generate the digits 0-9

7-segment display
hardware component

with 7 inputs
L[]

= abcd

o o a|d
circuit » |_|
el |g

Number to display »

7-segment display

hardware component

with 7 inputs
|1
c abcd
Number to display » circuit » einI:
f T

® T
‘”_|°
]
le) o
Q 0O OO0 T

L TR TR | TH

7-segment displays in clocks

folo bals b a)e j oy PR g U g
Lo - ge|gnge o e doe[Jo e T

llluminated segments

Digit
nn-nn-n

0 X

1 X X
2 X X X X X

3 X X X X X
4 X X X X
5 X X X X X
6 X X X X X X
7 X X X
8 X X X X X X X
9 X X X X X

7-segment display

hardware component

with 7 inputs
|11
c_ abcd
. o | a|d
Number to display » circuit » e|_|9
o efg
[T

How many binary
inputs do we need
for the numbers 0-9?

Decoding 7-segment displays in clocks

C C C
fald bale 520 o a)as
el_lg e Ig el_g nge
f f f f

0000
0001
0010
0011
0100
0101
0110

o1

1000

1001

0]

© 00 N O O A WO N =

_a | b | c
X X

X X X X X

x

llluminated segments

x

X X X X X

afjd b

C
|ge

f

X X X X X

f

a

X

e

C C
w0 ofad vale ofae oo
g
f

e lo o[Jo o lo
f f f

g
X X

X

X
X X X X X X X

12

Our friend the decoder

2-bit decoder: 4 output lines
3-bit decoder: 8 output lines

\

4-input bits How many output lines?

decoder

/

13

Our friend the decoder

2-bit decoder: 4 output lines
3-bit decoder: 8 output lines

4-input bits

\

decoder

/

16 output lines: exactly 1 will
be activated depending on the
input

14

Our friend the decoder

llluminated segments

e | b | o | d | e | f | g
X X X X X X

0000 0

10000 line will be 1 e
. abcd blil
(O]
© a d

0000 W) | & |allothers will be 0 Ani

© efg 5

I T

Our friend the decoder

llluminated segments

0 X X X X X X

0000

o000 HE)

/OOOO line will be 1 ||| |
abcd c S
2 | dald Halo
§ all others will be O o |_| 9 I Ig
T efg R f

How do we get it to display a 07?

16

Our friend the decoder

o llluminated segments
T o [o[o[- [] o
0 X X X X X X

0000

o 0000 line will be 1 | |||

. abcd C c

)

9 ald a |d
0000 ‘ § all others will be O bI_l o g

e g I I
9 |
efg f f

Connect the 0000 lineto:bcdefg

When the line is active those segments will illuminate

When it’s not active, no display

17

Our friend the decoder

llluminated segments

[a [b | c | d | e | f [g |
0001 1 X N
_—"10001 line will be 1 L]
. abcd bl C | C I
() I
8 ald b ald
Q all others will be O < |
0001 # 3 e| |g] Ig
-O —
efg f f
T T

How do we get it to display a 1?

18

Our friend the decoder

llluminated segments

[a [b | c | d | e | f [g |
0001 1 X N
_—"10001 line will be 1 L]
. abcd bl C | C I
() I
8 ald b ald
Q all others will be O < |
0001 # 3 e| |g] Ig
-O —
efg f f
T T

Connect the 0001 line to: d g

When the line is active those segments will illuminate

When it’s not active, no display

19

Our friend the decoder

D

llluminated segments

igit
| a | b | c | d | e [f | g |
0000 0 X X X X X X
0001 1 X X
0000 line
] Both of these L 1]
. _ lines want to abcd <
_ £ |0001 line o ald
4-input bits # S connect to d |_|
(O] e g
©
efg 5
I 1]
How do we
do this?

Hint: gate??

20

Our friend the decoder

llluminated segments

 a | b | ¢ | d | e [f | g
0000 0 X X X X X X
0001 1 X X
I 0000 line]
O abcd
Q@ 10001 line
4-input bits ‘ §
35
ef
— | 9

Since only one line will be
active at a time, use OR gate

21

A 7-segment display in Logisim

010,

Decd

I

C
{ald o ale badb dbl_a_ld :
el_lge Ige e ge g
f f
e |ge g e lg
f f

St llluminated segments
npu [fe]]
nnnnn

0000
0001 1

0011
0100
0101
0110
o111
1000
1001

X X

© 00 N O o ~ O
x X X X X
X

X
X
X X X X X X X

X X X X X
X

! ! 1 !

A 7-segment display in Logisim

Check it out!

PRACTICE TIME - Expanding to 16 characters

C C C C C C C
bI:Id b a|d bzld bzld b|&|d ola d bla d bJ:Id bgd bEd
Loo doolos o Joo To oo oo o T oL o o

t f 7 7 f 7 f

f f f

Imagine that the 7-segment

llluminated segments

display we have built so far is c nput | Chara
expanded to Includo 16 d jﬁd S N B O A
X X X X X

characters, the existing 10 g g 0000 O X

digits, and A-F, as depicted f f 0001 1 X X
here to differentiate among C C 0010 2 X X x x X

them. b a d b ald 0011 3 X X X X X

eE g g 0100 4 X X X X

. . f f 0101 5 X X X X X

How will the design of the 0110 6 « « « « « «

circuit change on Logisim- q d 0111 7 N « «

Evolution? 1000 8 X X X X X X X

9 g 1001 9 X X X X X

ANSWER- Expanding to 16 characters

Expanded table:

Circuit in Logisim-Evolution is
expanded to include all outputs
of decoders connected to 6

additional or gates

g
f
a d
Eg
f

o

Character

0000
0001
0010
0011
0100
0101
0110
o111
1000
1001
1010
1011
1100
1101
1110
111

0

—_

mM m O O W » ©O© 0 N o o »~» 0N

llluminated segments

I R R IR AR A B
X X X X X X

X

X X X
X X X
X X X
X X X
X X X

X X
X X X X
X X X X
X X X X
X X
X
X X
X X X
X X X

X

25

Combinational circuits

All circuits we have seen have been combinational: their output depends
on the present inputs and there is no notion of memory of past inputs.

combinational circuits perform arithmetic and logical operations,
transmit data, or convert code. So far, we have seen for

» Arithmetic and logical operations: logic circuits and half/full/and ripple-
carry adders

« Transmit data: decoders (and we will see multiplexers in the next
assignment)

« Convert code: 7-segment display decoders

26

Computer simplified

[
o

network

“the computer”

CPU

RAM

~

input devices

[_]

A

display

hard drive

- -

/
\

w

=/

media drive

Inside the CPU: Arithmetic Logic Unit (ALU)

Performs arithmetic and
Integer Integer

logical operations Operand Operand

Arithmetic: add, subtract, S A \/ B
- atus
multiply, ... Status
Opcode Y

Logical: AND, OR, shift

Integer
Result

28

Inside the CPU: Arithmetic Logic Unit (ALU)

Performs arithmetic and

| _ Integer Integer
logical operations Operand Operand
Arithmetic: add, subtract, A \/ B
multiply, ... Status Status
Opcode %
Logical: AND, OR, shift
Opcode specifies what operation Ilgteesgj{

(encoded in binary)

29

Inside the CPU: Arithmetic Logic Unit (ALU)

Where do the numbers come from?

Performs arithmetic and
Integer Integer

logical operations Operand Operand

Arithmetic: add, subtract,
i Status
multiply, ... Status
Opcode

Logical: AND, OR, shift

Integer

Opcode specifies what operation Result

(encoded in binary)

30

Inside the CPU

CPU

processor

R T

registers

Integer Integer
Operand Operand

Y y

A B
Status
Status
Opcode v

Integer
Result

Floating-point unit (FPU)

registers: local, fast memory slots

Memory hierarchy

processor

Il -

registers

RAM

>
%

hard drive
L
,(— \\,

Why do we have these different types of memory?

32

Memory speed

operation

register
RAM
Hard disk (SSD)

0.3 ns
120 ns
ims

Hard disk (HDD) 10ms

google.com

04s

times slower
than register

dCCessS

1
400
~million

~million
~billion

for
comparison...

1s
6 min
1 month

10 months
30 years

Memory

RAM

» 010101111000101000010010 ...

What is a byte?

Memory

RAM » 01010111 10001010 00010010 ...
\)
Y

byte = 8 bits
byte is abbreviated as B

My laptop has 64GB (gigabytes) of memory. How many bits is that?

Units of memory

Bit:

Nibble:

Byte: 8 bits
Kilobyte (KB):
Megabyte (MB)
Gigabyte (GB):
Terabyte (TB):

36

Units of memory

Bit: the smallest unit of memory.
Nibble: 4 bits, half a byte
Byte: 8 bits, the basic unit of measuring memory. Notation is B, e.g., 8B is 8 bytes or 64 bits.

Kilobyte (KB): 103 bytes = 1,000 bytes. (thousand bytes)
+ Kibibyte = 29 bytes = 1024 bytes (approximately a thousand bytes)

Megabyte (MB): 103 Kilobytes = 1,000,000 bytes. (million bytes)
Gigabyte (GB): 103 Megabytes = 1,000,000,000 bytes. (billion bytes)

Terabyte (TB): 103 Gigabytes = 1,000,000,000,000 bytes. (quadrillion bytes)

37

Memory

RAM » 01010111 10001010 00010010 ...
\)
Y

byte = 8 bits
byte is abbreviated as B

My laptop has 64GB (gigabytes) of memory. How many bits is that?

Memory

RAM

» 01010111 10001010 00010010 ...
\)
|

byte = 8 bits
byte is abbreviated as B

64GB = 64,000,000,000 = 64 billion bytes = 512 billion bits

Memory hierarchy

processor
HE oSy hard drive
| "

registers

Capacity: hundreds of registers Gigabytes Terabytes

40

Memory

address

0 01010111

RAM » 1 10001010
2 0001001
3 01011010

Memory is byte addressable

Memory

RAM

=

address

wWwnN —+ 0

01010111
10001010
0001001
01011010

Memory Is organized into
“‘words”, which is the most
common functional unit

Memory

address 32-bit words

O 10101011 10001010 00010010 01011010
RAM 4 11001011 00001110 01010010 01010110
8 10111011 10010010 00000000 01110100

Most modern computers use 32-bit
(4 byte) or 64-bit (8 byte) words

Memory capacity

Memory is commonly byte addressable (i.e., we can ask for a
specific byte)

32-bit processors access memory locations using a 32-bit
number

What is the largest a 32-bit, byte-addressable memory can be?
Hint: how many unique addresses are possible?

44

Memory capacity
With 32 bits, we can represent 232 unique numbers.

232 = 22210210210 ~ 4 % 103103103 = 4+ 10°

We could therefore address about 4 billion bytes, which is 4GB

45

Memory capacity

64-bit processors access memory locations using a 64-bit
number

What is the largest a 64-bit, byte-addressable memory can be?
Hint: how many unique addresses are possible?

46

Memory capacity
With 64 bits, we can represent 232 unique numbers.

264 — 24210210210210210210 ~ 16 * 1018
KB, GB, TB, Petabyte, Exabyte

16 Exabytes = 16 * 10° TB = 16 Million Terabytes

a7

Memory implemented

Memory is generally
implemented as a grid/matrix
of bytes

16 rows

= = = = = = =~ = = =
© (o] ~ ()] ()] EN w N = o

= = = = =
= = = = =
» w N = o

_l
=
o

c0

cl

c2

c3

c4

c5

16 columns

c6

c7

c8

c9

c10

ci

c12

c13

cl4

c15

48

Memory implemented

r

Memory is generally
implemented as a grid/matrix 5
of bytes “

r5

r7

16 rows

How much memory is this?

r15

c0

cl

c2

c3

c4

c5

16 columns

c6

c7

c8

c9

c10

ci

c12

c13

cl4

c15

49

Memory implemented

Memory is generally
implemented as a grid/matrix
of bytes

16 rows

16 * 8 = 2% % 24 = 28 = 256 bytes

r

r3

r5

r7

()

r10

i

r12

r13

r14

r15

c0

cl

c2

c3

ca

c5

16 columns

c6

c7

c8

c9

c10

ci

c12

c13

cl4

c15

50

Memory implemented

We can access a given by via
a row index and a column
index

16 rows

What row/column would this
entry be? (Assuming indices
start at 0)

c0

cl

c2

c3

c4

c5

16 columns

c6

c7

c8

c9

c10

ci

c12

c13

cl4

c15

51

Memory implemented

We can access a given by via 1
a row index and a column .
index &

r5

r7

16 rows

row = 4, column =3

r14

r15

c0

cl

c2

c3

c4

c5

16 columns

c6

c7

c8

c9

c10

ci

c12

c13

cl4

c15

52

Memory implemented

We can access a given by via
a row index and a column
index

16 rows

Everything is binary:
how many bits do we
need to specify the
row and column?

r

r3

r5

r7

()

r10

i1

r12

r13

r14

r15

c0

cl

c2

c3

c4

c5

16 columns

c6

c7

c8

c9

c10

ci

c12

c13

cl4

c15

53

Memory implemented

We can access a given by via
a row index and a column
index

16 rows

4 bits each for a total
of 8 bits

<8-bit memory address>

\ I\)
1 |

4 bits for row 4 bits for column

r

r3

r5

r7

()

r10

i

r12

r13

ri4

r15

c0

cl

c2

c3

c4

c5

16 columns

c6

c7

c8

c9

c10

ci

c12

c13

cl4

c15

Memory implemented

We can access a given by via
a row index and a column
index

What would be this
memory address in
binary?

16 rows

<8-bit memory address>

\ I\)
1 |

4 bits for row 4 bits for column

r

r3

r5

r7

()

r10

i1

r12

r13

ri4

r15

c0

cl

c2

c3

c4

c5

16 columns

c6

c7

c8

c9

c10

ci

c12

c13

cl4

c15

Memory implemented

We can access a given by via
a row index and a column
index

0100 0011
| !

row column

= = = = - = - = = =
© (o] ~ ()] ()] EN w N = o

i

r12

r13

r14

r15

16 columns

56

Memory implemented

We can access a given by via
a row index and a column
index

What would be this
memory address in
binary?

16 rows

<8-bit memory address>

\ I\)
1 |

4 bits for row 4 bits for column

r

r3

r5

r7

()

r10

i1

r12

r13

ri4

r15

c0

cl

c2

c3

c4

c5

16 columns

c6

c7

c8

c9

c10

ci

c12

c13

cl4

c15

Memory implemented

We can access a given by via
a row index and a column
index

Note we use unsigned ¢
numbers 2
©

1101 0100

\ Y J\ Y J

row column

= = = = = - = - = = =
© (o] ~ ()] ()] EN w N = o

i1

r12

r13

ri4

r15

16 columns

58

Quick aside

4-bit decoder

4bits

decoder

How many lines out?

Quick aside

4-bit decoder

4bits

decoder

16 lines out, exactly one
line will be 1

60

Quick aside: multiplexer

16:1 multiplexer

4bits

decoder

How many lines out?

Quick aside: multiplexer

4:1 multiplexer

4 inputs
ds dy di do
S T B

2 Inputsto s1 —

“select” S0 —»

which line

62

Quick aside: multiplexer

4:1 multiplexer

4 inputs
ds da di do
' .
O S1 —»
O S0 —»

63

Quick aside: multiplexer

4:1 multiplexer

—h S1 —»
O , .

64

Quick aside: multiplexer

16:1 multiplexer
16 inputs

|

4 inputs to
“select”
which line

65

From addresses to actual memory cells

4-bit

column Column address multiplexer
address

c0 cl c2 c3 c4 c5 c6 c7 c8 c9 c10 ci1 cl2 ci3 cl4 ci5

The decoder will be responsible for
taking the 4-bits of the row address
and mapping it to one of the 16 rows.

The multiplexer will be responsible for
taking the 4-bits of the column address
as selection lines and to map to a
single column.

P .
0
g
o
3]
0]
o
2}
N
o)
-
o
o)
o
=
o
o

4-bit
row
address

66

How do we store bits?

Anything unusual about this circuit?

67

Casel:R=1,5=0

What will be the output?

68

Casel:R=1,5=0

What will be the output? ' 1 0

69

Casel:R=0,5=1

What will be the output?

N1 1
Y R e

0] 1 0]
c-— 0,) i
1o o : s Q.prime
0]

70

Casel:R=0,5=1

What will be the output?

N1 1
X v [xov -

1 0
0

4l

CaselV:R=0,5=0

What will be the output?

O R

O s

1 %>Q

D__DO‘—DQ_prime
- (0

72

CaselV:R=0,5=0

What will be the output?

L=,

1 %>Q
Y R

0o 1 nothing changes

1 0
0 o 0 s@—_D(;»— —oeerime
0

73

CaselV:R=0,5=0

What will be the output?

O R

O s

1 %>Q

D__igo»—@o_mme
: 1

74

CaselV:R=0,5=0

What will be the output?

L=,

0o 1 nothing changes

1 0
0O o0 0 s @__D;»_ 2>Q prime 1
0

75

O s

O R

O s

CaselV:R=0,S=0

[0.>Q

Ty, oy

[8.>Q_prime

O R

N 1
N1 (oo 1

O s

D__EO’—DO_Drime 1
‘ b 1 76

SR-latch

prevlous Q _prevlous

I 0 1 0] 1

Il 1 0 1 0

Hold current state
Reset: Q=0

Set: Q=1

messy... not allowed

7

Casell:R=1,5=1 --IIIIII

Q_previous Q'_previous

I 0] 1 0 1

What will be the output?

Il 1 0] 1 0]
Il 1 1

1 %>Q

b
0]
SL%
0]

78

Casell:R=1,5=1 --IIIIII

Q_previous Q'_previous

What will be the output? B e
I 1 0 1 0]
11 1 1 0 0

D_ 1 rl% 0

XY X e 0

0] 1 0]
[9.>Q_prime
1 0 0 1 s E__Doo‘— O
0]

79

Casel:R=0,5=0

What will be the output?

| 0
1 1
n 1

[1>Q

{ 2.>Q_prime

80

SR-latch - Abstraction

« As an application of abstraction, instead of seeing the full
circuit on the right, you might encounter the following symbol
for SR-latches:

81

Latches for memory

Latches can store 1 bit

Other latches exists (e.g., D latch)

Other circuits that store 1 bit (e.g., flip-flops)

Can combine these to make memory (registers, RAM)

82

Latches for memory

Latches can store 1 bit
Other latches exists (e.g., D latch)
Other circuits that store 1 bit (e.g., flip-flops)

Can combine these to make memory (registers, RAM)

Why do we have hard drives?

83

Latches for memory

When power goes off, we lose what we stored!

