
CIRCUITS

David Kauchak
CS 51 – Spring 2026

Admin

Assignment 3

Check autograder results after submitting assignment

Examples

The Logisim circuit examples can be found at:

http://www.cs.pomona.edu/classes/cs51/circuits/

http://www.cs.pomona.edu/classes/cs51/circuits/

Inside a CPU

Gates

Quick recap

01010
01111+

Quick recap

01010
01111

11001

0111

+

A component

in1 in2

out
carry-out

carry-in

01010
01111

11001

0111

+

Adding with components

in1 in2

out
carry-out

in1 in2

out
carry-out

carry-inin1 in2

out
carry-out

carry-inin1 in2

out
carry-out

carry-in

01010
01111

0 11 10 11 1

+

Adding with components

in1 in2

out
carry-out

in1 in2

out
carry-out

carry-inin1 in2

out
carry-out

carry-inin1 in2

out
carry-out

carry-in

01010
01111

0 11 10 11 1

?

?

+

Adding with components

in1 in2

out
carry-out

in1 in2

out
carry-out

carry-inin1 in2

out
carry-out

carry-inin1 in2

out
carry-out

carry-in

01010
01111

0 11 10 11 1

?

?

1

1

0

0

+

Adding with components

in1 in2

out
carry-out

in1 in2

out
carry-out

carry-inin1 in2

out
carry-out

carry-inin1 in2

out
carry-out

carry-in

01010
01111

0 11 10 11 1

?

?

1

1

0

0

1

0

0

1

+

Adding with components

in1 in2

out
carry-out

in1 in2

out
carry-out

carry-inin1 in2

out
carry-out

carry-inin1 in2

out
carry-out

carry-in

01010
01111

0 11 10 11 1

?

?

1

1

0

0

1

0

0

1

1

0

0

1

+

Adding with components

in1 in2

out
carry-out

in1 in2

out
carry-out

carry-inin1 in2

out
carry-out

carry-inin1 in2

out
carry-out

carry-in

01010
01111

0 11 10 11 1

1

1

0

0

1

0

0

1

1

0

0

1

1

1

1

1

1
+

Implementing the component

in1 in2

out
carry-out

carry-in

What goes on inside the component?

Implementing the component

in1 in2

out
carry-out

carry-in

in1 in2 carry-in out carry-
out

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

What are the outputs?

Implementing the component

in1 in2

out
carry-out

carry-in

in1 in2 carry-in out carry-
out

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Gates and Boolean logic

NOT (¬)

AND (∧)

OR (∨)

XOR (⊕)

NAND (⊼)

NOR (⊽)

X Y ¬ X X ∧ Y X ∨ Y X ⊕ Y X ⊼ Y X ⊽ Y

0 0 1 0 0 0 1 1

0 1 1 0 1 1 1 0

1 0 0 0 1 1 1 0

1 1 0 1 1 0 0 0

Gates have inputs and outputs
values are 0 or 1

They are hardware components!

Gates as hardware

Utilizing gates

1
0

0 ?

X Y ¬ X X ∧ Y X ∨ Y X ⊕ Y X ⊼ Y X ⊽ Y

0 0 1 0 0 0 1 1

0 1 1 0 1 1 1 0

1 0 0 0 1 1 1 0

1 1 0 1 1 0 0 0

¬

∧

∨

⊕

⊼

⊽

Utilizing gates

1
0

0

0

0

X Y ¬ X X ∧ Y X ∨ Y X ⊕ Y X ⊼ Y X ⊽ Y

0 0 1 0 0 0 1 1

0 1 1 0 1 1 1 0

1 0 0 0 1 1 1 0

1 1 0 1 1 0 0 0

¬

∧

∨

⊕

⊼

⊽

Utilizing gates

1
1

1 ?

X Y ¬ X X ∧ Y X ∨ Y X ⊕ Y X ⊼ Y X ⊽ Y

0 0 1 0 0 0 1 1

0 1 1 0 1 1 1 0

1 0 0 0 1 1 1 0

1 1 0 1 1 0 0 0

¬

∧

∨

⊕

⊼

⊽

Utilizing gates

1
1

1

0

0

When is this circuit 1?

X Y ¬ X X ∧ Y X ∨ Y X ⊕ Y X ⊼ Y X ⊽ Y

0 0 1 0 0 0 1 1

0 1 1 0 1 1 1 0

1 0 0 0 1 1 1 0

1 1 0 1 1 0 0 0

¬

∧

∨

⊕

⊼

⊽

Utilizing gates

1
1

1

X Y Z OUT

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

Designing more interesting circuits

X Y Z OUT

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Design a circuit for this

X Y ¬ X X ∧ Y X ∨ Y X ⊕ Y X ⊼ Y X ⊽ Y

0 0 1 0 0 0 1 1

0 1 1 0 1 1 1 0

1 0 0 0 1 1 1 0

1 1 0 1 1 0 0 0

¬

∧

∨

⊕

⊼

⊽

Designing more interesting circuits

X Y Z OUT

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Designing more interesting circuits

X Y Z OUT

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

Design a circuit for this

X Y ¬ X X ∧ Y X ∨ Y X ⊕ Y X ⊼ Y X ⊽ Y

0 0 1 0 0 0 1 1

0 1 1 0 1 1 1 0

1 0 0 0 1 1 1 0

1 1 0 1 1 0 0 0

¬

∧

∨

⊕

⊼

⊽

Truth table to Boolean expression

What approaches have we seen for developing a
Boolean expression from a truth table?

X Y Z OUT

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

Truth table to Boolean expression

What approaches have we seen for developing a
Boolean expression from a truth table?

X Y Z OUT

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

minterm expansion (DNF
– OR of ANDs)

maxterm expansion (CNF
– AND or ORs)

K-Maps (OR of ANDs)

Minterm expansion

X Y Z OUT Minterm

0 0 0 1 ⌐X ∧ ⌐Y ∧ ⌐Z

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1 X ∧ ⌐Y ∧ ⌐Z

1 0 1 0

1 1 0 1 X ∧ Y ∧ ⌐Z

1 1 1 0

All these should be 1 and everything else 0

Minterm expansion

X Y Z inputs

connection

gates

Minterm expansion

When will this AND-gate be 1?

X Y Z

Minterm expansion

Only when X=0, Y=0, Z=0

X Y Z

X Y Z OUT Minterm

0 0 0 1 ⌐X ∧ ⌐Y ∧ ⌐Z

Minterm expansion

When will this AND-gate be 1?

X Y Z

Minterm expansion

Only when in1=1, in2=0, in3=0

X Y Z

X Y Z OUT Minterm

1 0 0 1 X ∧ ⌐Y ∧ ⌐Z

Minterm expansion

Make a conjunction for each minterm

X Y Z OUT Minterm

0 0 0 1 ⌐X ∧ ⌐Y ∧ ⌐Z

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1 X ∧ ⌐Y ∧ ⌐Z

1 0 1 0

1 1 0 1 X ∧ Y ∧ ⌐Z

1 1 1 0

X Y Z

Minterm expansion

X Y Z OUT Minterm

0 0 0 1 ⌐X ∧ ⌐Y ∧ ⌐Z

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1 X ∧ ⌐Y ∧ ⌐Z

1 0 1 0

1 1 0 1 X ∧ Y ∧ ⌐Z

1 1 1 0

How do we combine these?

X Y Z

Minterm expansion

X Y Z OUT Minterm

0 0 0 1 ⌐X ∧ ⌐Y ∧ ⌐Z

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1 X ∧ ⌐Y ∧ ⌐Z

1 0 1 0

1 1 0 1 X ∧ Y ∧ ⌐Z

1 1 1 0

OR-gate: (⌐X ∧ ⌐Y ∧ ⌐Z) ∨ (X ∧ ⌐Y ∧ ⌐Z) ∨ (X ∧ Y ∧ ⌐Z)

X Y Z

K-maps

X Y Z OUT

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

Can you use a K-map to come up with a
Boolean expression for this table?

K-maps

X Y Z OUT

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

Can you use a K-map to come up with a
Boolean expression for this table?

X

YZ

What is the Boolean expression?

K-maps

X Y Z OUT

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

Can you use a K-map to come up with a
Boolean expression for this table?

X

YZ

(⌐Y ∧ ⌐Z) ∨ (X ∧ ⌐Z)

K-maps

X Y Z OUT

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

Can you design a circuit?

X

YZ

(⌐Y ∧ ⌐Z) ∨ (X ∧ ⌐Z)

K-maps

Can you design a circuit?

(⌐Y ∧ ⌐Z) ∨ (X ∧ ⌐Z)

X Y Z

X Y Z OUT

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

Back to addition…

in1 in2

out
carry-out

carry-in

in1 in2 carry-in carry-
out

sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

A half-adder: no carry-in

A B carry sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

A half-adder: no carry-in

Design a circuit for this

Hint: solve each output bit
independently

A B carry sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

X Y ¬ X X ∧ Y X ∨ Y X ⊕ Y X ⊼ Y X ⊽ Y

0 0 1 0 0 0 1 1

0 1 1 0 1 1 1 0

1 0 0 0 1 1 1 0

1 1 0 1 1 0 0 0

¬

∧

∨

⊕

⊼

⊽

A half-adder: no carry-in

low order bit of A+B

higher order bit of A+B

A B carry sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Implementing a full adder

half-adder

half-adder

A+B

Implementing a full adder

low order bit
of A+B

high order
bit of A+B

low order bit
of A+B+C

high order bit of
A+B+C

Can we ever get a carry
from both half adders?

A B carry sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Implementing a full adder

low order bit
of A+B

high order
bit of A+B

low order bit
of A+B+C

high order bit of
A+B+C

No. If there is a carry
from A+B, then the low
order bit (sum) must be 0

A B carry sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Implementing the component

in1 in2

out
carry-out

carry-in

What goes on inside the component?

Implementing the component

A B

sum
carry-out

carry-in

Ripple carry adder

To implement an n-bit adder, we chain together n full-
adders, each adder handles one bit position

A0 B0

out
carry-out

A1 B1

out
carry-out

carry-inA2 B2

out
carry-out

carry-inA3 B3

out
carry-out

carry-in carry-in

A = A3 A2 A1 A0

B = B3 B2 B1 B0
Adder for adding 4-bit numbers

?

Ripple carry adder

To implement an n-bit adder, we chain together n full-
adders, each adder handles one bit position

A0 B0

out
carry-out

A1 B1

out
carry-out

carry-inA2 B2

out
carry-out

carry-inA3 B3

out
carry-out

carry-in carry-in

A = A3 A2 A1 A0

B = B3 B2 B1 B0
Adder for adding 4-bit numbers

0

Ripple carry adder

To implement an n-bit adder, we chain together n full-
adders, each adder handles one bit position

A0 B0

out
carry-out

A1 B1

out
carry-out

carry-inA2 B2

out
carry-out

carry-inA3 B3

out
carry-out

carry-in carry-in

A = A3 A2 A1 A0

B = B3 B2 B1 B0
Adder for adding 4-bit numbers

0

Any downsides (computationally) to ripple carry adder?

Look at ripple carry adder example

Many circuits
¤ half-adder
¤ full-adder (using half-adders)
¤ ripple-carry adder (using full-adders)

Simulator basics

Mystery circuit

out0out1out2out3

d1 d0 out
0

out1 out3 out3

0 0

0 1

1 0

1 1

What does this circuit do?

2-bit decoder

d1 d0 out
0

out1 out3 out3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

Sends ‘1’ along one of the output lines

2-bit decoder*

What does the extra input do?

2-bit decoder*

When 0, doesn’t select any lines, when 1, functions normally

3-bit decoder

3 inputs

How many output lines?

3-bit decoder

3 inputs

8 output lines

Inputs Outputs

𝑑! 𝑑" 𝑑# 𝑡### 𝑡##" 𝑡#"# 𝑡#"" 𝑡"## 𝑡"#" 𝑡""# 𝑡"""
0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

3-bit decoder

3 inputs

8 output lines

Inputs Outputs

𝑑! 𝑑" 𝑑# 𝑡### 𝑡##" 𝑡#"# 𝑡#"" 𝑡"## 𝑡"#" 𝑡""# 𝑡"""
0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

Could make from scratch

Better idea: reuse 2-bit decoders

3-bit decoder

Could we use two 2-bit decoders?

3-bit decoder

d2 gets sent to the enable of the two 2-bit
decoders. One as normal and one negated.

3-bit decoder using 2-bit decoders

2-bit
decoder

2-bit
decoder

Look at decoders in simulator

Examples

The Logisim circuit examples can be found at:

http://www.cs.pomona.edu/classes/cs51/circuits/

You can download Logism Evolution at:
https://github.com/logisim-evolution/logisim-evolution

http://www.cs.pomona.edu/classes/cs51/circuits/
https://github.com/logisim-evolution/logisim-evolution
https://github.com/logisim-evolution/logisim-evolution
https://github.com/logisim-evolution/logisim-evolution
https://github.com/logisim-evolution/logisim-evolution
https://github.com/logisim-evolution/logisim-evolution
https://github.com/logisim-evolution/logisim-evolution

