
Binary 
Arithmetic 
in Python
CS51 – Spring 2026

+

à

>>

🥳

Computer Systems



Administrative

Assignment 2

Assignment 3 available (complete first part before lab)

Lab tomorrow

Mentor hour attendance
2



3



Bitwise 
operations

4



Bitwise operations

X Y X ⊕ Y

0 0 0

0 1 1

1 0 1

1 1 0

X Y X ∧ Y

0 0 0

0 1 0

1 0 0

1 1 1

X Y X ∨ Y

0 0 0

0 1 1

1 0 1

1 1 1

& - AND

| - OR ^ - XOR

X ¬ X

0 1

1 0

~ - NOT

Treat numbers as twos 
complement numbers

Perform Boolean operation 
per bit of two numbers



Bitwise operations: & (bitwise-AND)

6

X Y X ∧ Y

0 0 0

0 1 0

1 0 0

1 1 1

AND

Convert numbers to binary (twos complement)

For each digit, computer the Boolean operation

Convert resulting Boolean number back to an int 

6 & 5 = 



Bitwise operations: & (bitwise-AND)

7

X Y X ∧ Y

0 0 0

0 1 0

1 0 0

1 1 1

AND

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int 

6 & 5 = 



Bitwise operations: & (bitwise-AND)

8

X Y X ∧ Y

0 0 0

0 1 0

1 0 0

1 1 1

AND

6 & 5 = 

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int 

0 1 1 02

0 1 0 12



Bitwise operations: & (bitwise-AND)

9

X Y X ∧ Y

0 0 0

0 1 0

1 0 0

1 1 1

AND

6 & 5 = 

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int 

0 1 1 02

0 1 0 12& 



Bitwise operations: & (bitwise-AND)

10

X Y X ∧ Y

0 0 0

0 1 0

1 0 0

1 1 1

AND

6 & 5 = 

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int 

0 1 1 02

0 1 0 12& 

0 1 0 02



Bitwise operations: & (bitwise-AND)

11

X Y X ∧ Y

0 0 0

0 1 0

1 0 0

1 1 1

AND

6 & 5 = 

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int 

0 1 1 02

0 1 0 12& 

0 1 0 02



Bitwise operations: & (bitwise-AND)

12

X Y X ∧ Y

0 0 0

0 1 0

1 0 0

1 1 1

AND

6 & 5 = 

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int 

0 1 1 02

0 1 0 12& 

0 1 0 02

= 4 



Bitwise operations: | (bitwise-OR)

13

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int 

11 | -9 = 

X Y X ∨ Y

0 0 0

0 1 1

1 0 1

1 1 1

OR



Bitwise operations: | (bitwise-OR)

14

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int 

11 | -9 = 

X Y X ∨ Y

0 0 0

0 1 1

1 0 1

1 1 1

OR

0 1 0 1 12

1 0 1  1 12



Bitwise operations: | (bitwise-OR)

15

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int 

11 | -9 = 

X Y X ∨ Y

0 0 0

0 1 1

1 0 1

1 1 1

OR

0 1 0 1 12

1 0 1  1 12| 



Bitwise operations: | (bitwise-OR)

16

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int 

11 | -9 = 

X Y X ∨ Y

0 0 0

0 1 1

1 0 1

1 1 1

OR

0 1 0 1 12

1 0 1  1 12| 

1 1 1  1 12



Bitwise operations: | (bitwise-OR)

17

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int 

11 | -9 = 

X Y X ∨ Y

0 0 0

0 1 1

1 0 1

1 1 1

OR

0 1 0 1 12

1 0 1  1 12| 

1 1 1  1 12



Bitwise operations: | (bitwise-OR)

18

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int 

11 | -9 = 

X Y X ∨ Y

0 0 0

0 1 1

1 0 1

1 1 1

OR

0 1 0 1 12

1 0 1  1 12| 

1 1 1  1 12

= -1 



Bitwise operations: ~ (bitwise-NOT)

19

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int 

~9 = 
X ¬ X

0 1

1 0

NOT



Bitwise operations: ~ (bitwise-NOT)

20

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int 

~9 = 010012

X ¬ X

0 1

1 0

NOT

For positive numbers, make sure to include a leading 0



Bitwise operations: ~ (bitwise-NOT)

21

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int 

X ¬ X

0 1

1 0

NOT

~9 = 010012



Bitwise operations: ~ (bitwise-NOT)

22

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int 

X ¬ X

0 1

1 0

NOT

~9 = 010012 = 101102



Bitwise operations: ~ (bitwise-NOT)

23

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int 

X ¬ X

0 1

1 0

NOT

~9 = 010012 = 101102



Bitwise operations: ~ (bitwise-NOT)

24

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int 

X ¬ X

0 1

1 0

NOT

~9 = 010012 = 101102 = -10 



Bitwise operations: length differences

25

10 ^ 1 = 
X Y X ⊕ Y

0 0 0

0 1 1

1 0 1

1 1 0

^ - XOR

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int 



Bitwise operations: length differences

26

10 ^ 1 = 
X Y X ⊕ Y

0 0 0

0 1 1

1 0 1

1 1 0

^ - XOR

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int 

0 1 0 1 02

0 12



Bitwise operations: length differences

27

10 ^ 1 = 
X Y X ⊕ Y

0 0 0

0 1 1

1 0 1

1 1 0

^ - XOR

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int 

0 1 0 1 02

0 12^ 

What do we do here?



Bitwise operations: length differences

28

10 ^ 1 = 
X Y X ⊕ Y

0 0 0

0 1 1

1 0 1

1 1 0

^ - XOR

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int 

0 1 0 1 02

0 0 0 0 12^ 

Fill with zeros



Bitwise operations: length differences

29

10 ^ 1 = 
X Y X ⊕ Y

0 0 0

0 1 1

1 0 1

1 1 0

^ - XOR

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int 

0 1 0 1 02

0 0 0 0 12^ 

0 1 0 1 12



Bitwise operations: length differences

30

10 ^ 1 = 
X Y X ⊕ Y

0 0 0

0 1 1

1 0 1

1 1 0

^ - XOR

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int 

0 1 0 1 02

0 0 0 0 12^ 

0 1 0 1 12



Bitwise operations: length differences

31

10 ^ 1 = 
X Y X ⊕ Y

0 0 0

0 1 1

1 0 1

1 1 0

^ - XOR

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int 

0 1 0 1 02

0 0 0 0 12^ 

0 1 0 1 12

= 11 



An aside

What is -3 in twos complement using:

- Using 3 bits:

- Using 4 bits:

- Using 5 bits:

- Using 32 bits:

32



An aside: -3

Using 3 bits

33

1 0 1
-22 21 10

-4 2 1



An aside: -3

Using 4 bits

34

1 1 0 1
-23 22 21 10

-8  4  2  1



An aside: -3

Using 5 bits

35

1 1 1 0 1
-24 23 22 21 10

-16 8  4  2  1



An aside: -3

36

1 1 1 0 1
-24 23 22 21 10

-16 8  4  2  1

1 1 0 1
-23 22 21 10

-8  4  2  1

When we add a bit, we subtract 16



An aside: -3

37

1 1 1 0 1
-24 23 22 21 10

-16 8  4  2  1

1 1 0 1
-23 22 21 10

-8  4  2  1

When we add a bit, we subtract 16

But we also add 16 (-8 becomes 8)



An aside

number of bits -3
3 101
4 1101
5 11101
6 111101
7 1111101
8 11111101
9 111111101
10 1111111101
… 1…..101

38



An aside: -3

Using 4 bits

39

1 1 0 1
-22 21 10

-4 2 1



Bitwise operations: length differences

40

10 ^ -1 = 
X Y X ⊕ Y

0 0 0

0 1 1

1 0 1

1 1 0

^ - XOR

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int 

0 1 0 1 02

What do we do for -1?



Bitwise operations: length differences

41

10 ^ -1 = 
X Y X ⊕ Y

0 0 0

0 1 1

1 0 1

1 1 0

^ - XOR

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int 

0 1 0 1 02

1  1  1  1  12



Bitwise operations: length differences

42

10 ^ -1 = 
X Y X ⊕ Y

0 0 0

0 1 1

1 0 1

1 1 0

^ - XOR

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int 

0 1 0 1 02

1  1  1  1  12



Bitwise operations: length differences

43

10 ^ -1 = 
X Y X ⊕ Y

0 0 0

0 1 1

1 0 1

1 1 0

^ - XOR

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int 

0 1 0 1 02

^ 

1 0 1 0 12

1  1  1  1  12



Bitwise operations: length differences

44

10 ^ -1 = 
X Y X ⊕ Y

0 0 0

0 1 1

1 0 1

1 1 0

^ - XOR

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int 

0 1 0 1 02

^ 

1 0 1 0 12

1  1  1  1  12



Bitwise operations: length differences

45

10 ^ -1 = 
X Y X ⊕ Y

0 0 0

0 1 1

1 0 1

1 1 0

^ - XOR

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int 

0 1 0 1 02

^ 

1 0 1 0 12

1  1  1  1  12 = -11 



PRACTICE TIME – Bitwise operations

46

x = 5!" and 𝑦 = −9!"	
• ~𝑥
• ~𝑦
• 𝑥&𝑦
• 𝑥|𝑦
• 𝑥 ∧ 𝑦

X Y X ⊕ Y

0 0 0

0 1 1

1 0 1

1 1 0

X Y X ∧ Y

0 0 0

0 1 0

1 0 0

1 1 1

X Y X ∨ Y

0 0 0

0 1 1

1 0 1

1 1 1

& - AND

| - OR ^ - XOR

X ¬ X

0 1

1 0

~ - NOT



ANSWER – Bitwise operations

47

x = 5!" and 𝑦 = −9!"	
• ~𝑥 = 11010$ = −6!"
• ~𝑦	=	01000$ = 8!"
• 𝑥&𝑦 = 00101$ = 5!"
• 𝑥|𝑦 = 10111$ = −9!"
• 𝑥 ∧ 𝑦 = 10010$ = −14!"

X Y X ⊕ Y

0 0 0

0 1 1

1 0 1

1 1 0

X Y X ∧ Y

0 0 0

0 1 0

1 0 0

1 1 1

X Y X ∨ Y

0 0 0

0 1 1

1 0 1

1 1 1

& - AND

| - OR ^ - XOR

X ¬ X

0 1

1 0

~ - NOT



Masking

48

We can use bitwise operations to mask a certain number of bits in a 
number.

Masking resets, sets, or inverts certain bits

Bitwise AND will reset a subset of the bits to 0 (or can also be seen as 
copying a subset of bits and zeroing everything else out)

Bitwise OR will set a subset of the bits to 1

Bitwise XOR will invert a subset of the bits



Bitwise AND – Resetting bits to 0

49

We want to reset the three least significant bits to 0

Bit 6th 5th 4th 3rd 2nd 1st 0th 

Data 0/1 0/1 0/1 0/1 0/1 0/1 0/1

Mask

Result

What number should we bitwise-AND (&) to do this?

&



Bitwise AND – Resetting bits to 0

50

We want to reset the three least significant bits to 0

Bit 6th 5th 4th 3rd 2nd 1st 0th 

Data 0/1 0/1 0/1 0/1 0/1 0/1 0/1

Mask 1 1 1 1 0 0 0

Result

What number should we bitwise-AND (&) to do this?

&



Bitwise AND – Resetting bits to 0

51

We want to reset the three least significant bits to 0

Bit 6th 5th 4th 3rd 2nd 1st 0th 

Data 0/1 0/1 0/1 0/1 0/1 0/1 0/1

Mask 1 1 1 1 0 0 0

Result

-8

124-8

&



Bitwise AND – Resetting bits to 0

52

For example,47!" = 0101111$ we want to reset the three least 
significant bits to 0

Bit 6th 5th 4th 3rd 2nd 1st 0th 

Data 0 1 0 1 1 1 1

Mask 1 1 1 1 0 0 0

Result

& the mask

&



Bitwise AND – Resetting bits to 0

53

For	47!" = 0101111$ we want to reset the three least significant 
bits to 0

Bit 6th 5th 4th 3rd 2nd 1st 0th 

Data 0 1 0 1 1 1 1

Mask 1 1 1 1 0 0 0

Result 0 1 0 1 0 0 0

& the mask

&



Bitwise AND – Resetting bits to 0

54

For	47!" = 0101111$ we want to reset the three least significant 
bits to 0

Bit 6th 5th 4th 3rd 2nd 1st 0th 

Data 0 1 0 1 1 1 1

Mask 1 1 1 1 0 0 0

Result 0 1 0 1 0 0 0

40

&



PRACTICE TIME - Bitwise AND

55

What would the result be of applying the mask 42!" on the input 85!" using bitwise AND?.



ANSWER - Bitwise AND

56

• What would the result be of applying the mask 42!" on the input 85!" using bitwise AND? 

• First, we convert from decimal to binary, working with 8 bits: 

• 42!" = 00101010#
• 85!" = 01010101# 

• We then apply the bitwise AND operation which will reset the the 7th (no real effect), 6th, 
4th, 2nd, and 0th  bit of the input, resulting to 0!": 

Bit 7th 6th 5th 4th 3rd 2nd 1st 0th 

Data 0 1 0 1 0 1 0 1

Mask 0 0 1 0 1 0 1 0

Result 0 0 0 0 0 0 0 0



Bitwise OR – Setting bits to 1

57

We want to set the first two bits to 1 

Bit 7th 6th 5th 4th 3rd 2nd 1st 0th 

Data 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

Mask

Result

What number should we bitwise-OR (|) to do this?

|



Bitwise OR – Setting bits to 1

58

We want to set the first two bits to 1 

Bit 7th 6th 5th 4th 3rd 2nd 1st 0th 

Data 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

Mask 1 1 0 0 0 0 0 0

Result

What number should we bitwise-OR (|) to do this?

|

1248163264-128



Bitwise OR – Setting bits to 1

59

We want to set the first two bits to 1 

Bit 7th 6th 5th 4th 3rd 2nd 1st 0th 

Data 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

Mask 1 1 0 0 0 0 0 0

Result|

1248163264-128

-64



Bitwise OR – Setting bits to 1

60

For example, 47!" = 00101111, we want to set the first two bits 
to 1 

Bit 7th 6th 5th 4th 3rd 2nd 1st 0th 

Data 0 0 1 0 1 1 1 1

Mask 1 1 0 0 0 0 0 0

Result 1 1 1 0 1 1 1 1|

1248163264-128



Bitwise OR – Setting bits to 1

61

For example, 47!" = 00101111, we want to set the first two bits 
to 1 

Bit 7th 6th 5th 4th 3rd 2nd 1st 0th 

Data 0 0 1 0 1 1 1 1

Mask 1 1 0 0 0 0 0 0

Result 1 1 1 0 1 1 1 1|

1248163264-128

-17



PRACTICE TIME - Bitwise OR

62

What would the result be of applying the mask 17!" on the input −27!" using bitwise OR?



ANSWER - Bitwise OR

63

• What would the result be of applying the mask 17!" on the input -27!" using bitwise OR? 
You can assume you have 8 bits.

• First, we convert from decimal to binary, working with 8 bits: 

• 17!" = 010001#
• −27!"= 100101# 

• We then apply the bitwise OR operation which will set the the 4th and 0th  bit of the input 
to 1, resulting to −11!": 

Bit 5th 4th 3rd 2nd 1st 0th 

Data 1 0 0 1 0 1

Mask 0 1 0 0 0 1

Result 1 1 0 1 0 1



Bitwise XOR – Inverting bits

64

We want to invert the first two and last two digits and leave the 
four in middle unchanged

Bit 7th 6th 5th 4th 3rd 2nd 1st 0th 

Data 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

Mask

Result

What number should we bitwise-XOR (^) to do this?

^



Bitwise XOR – Inverting bits

65

We want to invert the first two and last two digits and leave the 
four in middle unchanged

Bit 7th 6th 5th 4th 3rd 2nd 1st 0th 

Data 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

Mask 1 1 0 0 0 0 1 1

Result

What number should we bitwise-XOR (^) to do this?

^

1248163264-128



Bitwise XOR – Inverting bits

66

We want to invert the first two and last two digits and leave the 
four in middle unchanged

Bit 7th 6th 5th 4th 3rd 2nd 1st 0th 

Data 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

Mask 1 1 0 0 0 0 1 1

Result

-61

^

1248163264-128



Bitwise XOR – Inverting bits

67

For example, 117!" = 01110101,	we want to invert the first two 
and last two digits and leave the four in middle unchanged

Bit 7th 6th 5th 4th 3rd 2nd 1st 0th 

Data 0 1 1 1 0 1 0 1

Mask 1 1 0 0 0 0 1 1

Result 1 0 1 1 0 1 1 0^

1248163264-128



Bitwise XOR – Inverting bits

68

For example, 117!" = 01110101,	we want to invert the first two 
and last two digits and leave the four in middle unchanged

Bit 7th 6th 5th 4th 3rd 2nd 1st 0th 

Data 0 1 1 1 0 1 0 1

Mask 1 1 0 0 0 0 1 1

Result 1 0 1 1 0 1 1 0^

1248163264-128

-74



PRACTICE TIME - Mystery 1

69

What does the following Python function do?

def mystery1(a, b):

 return (a ^ b) == 0



ANSWER - Mystery 1

70

What does the following Python function do?

def mystery1(a, b):

 return (a ^ b) == 0
• The function takes two numbers (a,b), applies the bitwise XOR (a^b), turns it into a 

decimal and compares the result to 0. If it is equal to 0, it returns True, otherwise it 
returns False.

• If both numbers have 𝑛 bits, we have 𝑎$%!𝑎$%#…𝑎"

• Tests if a and b are equal.

• 5!" 	∧ 5!"	is 0101# 	∧ 	0101# =	0000# = 0!"

• 5!" 	∧ 6!"	is 0101# 	∧ 	0110# =	0100# = 4!"



PRACTICE TIME - Mystery 2

71

What does the following Python function do? You can assume we are working with 4 bits

def mystery2(a):

 return (a & (1<<3)) != 0



ANSWER - Mystery 2

72

What does the following Python function do? You can assume we are working with 32 bits

def mystery2(a):

 return (a & (1<<3)) != 0
• Checks whether a is negative by isolating the MSB.



PRACTICE TIME - Mystery 3

73

What does the following Python function do?

def mystery3(a,b):

 return (a & (1<<b)) != 0



ANSWER - Mystery 3

74

What does the following Python function do?

def mystery3(a,b):

 return (a & (1<<b)) != 0
Tests if the b-th bit in a is 1.



PRACTICE TIME - Mystery 4

75

What does the following Python function do?

def mystery4(a):

 return a | 1



ANSWER - Mystery 4

76

• What does the following Python function do?

def mystery4(a):

 return a | 1
If a is even, it returns a+1, if a is odd, it leaves it unchanged. 



bit_length()

Write a function that removes the most significant bit of a positive number

77



bit_length()

Write a function that removes the most significant bit of a positive number

78

&     0      1        1      1      1



bit_length()

Write a function that removes the most significant bit of a number

79

&     0      1        1      1      1

How can we get this number?



bit_length()

Write a function that removes the most significant bit of a number

80

&     0      1        1      1      1
1       0       0     0     0 -1



bit_length()

Returns the number of bits in a number (ignoring the sign bit)

81



bit_length()

Write a function that removes the most significant bit of a positive number

82

def remove_most_significant_bit(a):
 bits = a.bit_length()
 mask = (1 << bits - 1) - 1
 return a & mask



Why bitwise operators?

Represent many Boolean values with a single integer (e.g., in memory constrained 
environments)

Are fast, so can speed up computation (if you can post your problem as a bitwise 
operation)

Interacting with low-level hardware

83



Beyond 
numbers

84



Floating point numbers

85



Representing information 

86

• But what about non-integer numbers, such as floating-point numbers, or any other type 
of information, such as letters, emojis, colors, sound etc?

• There are different international standards that determine how binary is encoded into 
other representations. 

• For example, the most used standard to encode real numbers is the IEEE 754 standard.



Text

87



Encoding text - ASCII

88

ASCII (American Standard Code for Information Interchange) which was established in the 
‘60s and used 7 bits to represent 128 characters: These included the capital and lowercase 
letters of the English alphabet, digits 0-9, punctuation and special symbols like @. 

For example, 01000011 01010011 00110101 00110001 00100001 represents the text “CS51!”



Encoding text - Unicode

89

• In 1990s, Unicode expanded 
encoding to thousands of characters 
to account for all different schemes 
individual languages used and even 
includes emojis! 

• The most common implementations 
of Unicode are UTF-8 ,which was 
designed for backward compatibility 
with ASCII, and UTF-16.



How is an image represented?



How is an image represented?

• images are made up of 
pixels
• for a color image, each 
pixel corresponds to an 
RGB value (i.e. three 
numbers)



Image features

for each pixel: R[0-255]
     G[0-255]
   B[0-255]



Encoding images

93

• Images consist of pixels, the smallest image unit. 

• Each pixel stores a color using three color channels: Red, Green, Blue (RGB).

• Each color channel can be encoded using binary numbers

• Typical: 8 bits per channel, that is 24 bits per pixel. With 8 bits, we can represent 0,…, 255

• For example, 00000000 represents no red and 11111111 represents full red. Same for green, blue.

• Putting it together, we have triples of numbers to represent pixels. E.g., 

• Pure red = 11111111 00000000 00000000→ (255,0,0) – only red

• Pure white = 11111111 11111111 11111111→ (255,255,255) – all three colors

• Pure black =00000000 00000000	00000000→ (0, 0, 0) – absence of all three colors

• An entire image would be represented as a matrix of pixels (width × height), each pixel's RGB 
values encoded in binary



PRACTICE TIME - Encoding images

94

f we have 8 bits for each of the three color channels, how many colors can we support in a 24-bit 
RGB system?



ANSWER - Encoding images

95

• If we have 8 bits for each of the three color channels, how many colors can we support in a 24-bit 
RGB system?

• Each channel supports 2! = 256 possible values.

• Thus, the total number of supported colors is 256	×256×256 = 16,777,216

• That means that a 24-bit RGB system, can represent over 16 million colors.



RGBA format

96

• Sometimes, the RGB format is supplemented with one more channel called the alpha channel. 

• The alpha channel indicates how opaque a pixel is.

• By convention RGBA colors are stored in hex. For example, for alpha, 00 would be fully 
transparent and FF fully opaque. For colors, 00 would be lack of color and FF would be pure color.

• For example, the RGBA color #FF00FF80 is a semi-transparent purple:

• 𝐹𝐹!" stands for a full red in the red channel

• 00!" stands for no green in the green channel 

• 𝐹𝐹!" stands for a full blue in the blue channel

• and 80!" = 128!#	represents 50% opacity. 



Practice Problems – Problem 1

• Convert the following decimal numbers to their unsigned binary representation and add them:

• 45"# + 27"#
• How many bits do you need to not have overflow?

• Assume 6-bit signed numbers in two’s complement representation. Add them and state whether 
overflow occurs:

• 101110$ + 010101$
• Convert these three numbers to decimal to double check your work.

• Add the hex numbers 0xA7+0x5C 

• Convert these three numbers to decimal to double check your work.

97



Practice Problems – Answer 1

• Convert the following decimal numbers to their unsigned binary representation and add them:

• 45"# + 27"# = 101101$ + 011011$ = 1001000

• How many bits do you need to not have overflow? 7

• Assume 6-bit signed numbers in two’s complement representation. Add them and state whether 
overflow occurs:

• 101110$ + 010101$ = 000011$.	No overflow

• Convert these three numbers to decimal to double check your work. -18+21=-3 

• Add the hex numbers 𝐴7"% + 5𝐶"% 

• 103!"
• Convert these three numbers to decimal to double check your work. 167!# + 92!# = 259!#	

98



Practice Problems – Problem 2

• What will the results of the following operations be in binary and decimal assuming 8 bits?

• −28!#≫ 2

99



Practice Problems – Answer 2

• What will the results of the following operations be in binary and decimal assuming 8 bits?

• −28!#≫ 2	 =	11100100$ ≫ 2	 = 11111001$ = −7!#

100



Practice Problems – Problem 3

• Compute the following expressions in Python:

• 101101012$&11110000$
• 01011011$|00101101$
• 11001010$	⋀10101100$

101



Practice Problems – Answer 3

• Compute the following expressions in Python:

• 101101012$&11110000$ = 10110000$
• 01011011$|00101101$ = 01111111$
• 11001010$	⋀10101100$ = 01100110$

102


