Computer Systems

Binary
Arithmetic

iIn Python

CS51 - Spring 2026

Administrative

Assignment 2

Assignment 3 available (complete first part before lab)

Lab tomorrow

Mentor hour attendance

There are 10 types
of people in the world

Those who understand binary

and those who don’t

Bitwise

operations

Bitwise operations

& - AND ~_NOT
X | Y | XAY | s
0 0 0 = ’
0] 1 0 - 0
1 0 0
Treat numbers as twos - - ;
complement numbers
|- OR ~ - XOR

Perform Boolean operation “

per bit of two numbers

Bitwise operations: & (bitwise-AND)

AND
0 0] 0
6 &5 = e —
1 0] 0
1 1 1

Convert numbers to binary (twos complement)

For each digit, computer the Boolean operation

Convert resulting Boolean number back to an int

Bitwise operations: & (bitwise-AND)

AND
0 0] 0
68&5 = B -
1 0] 0
1 1 1

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int

Bitwise operations: & (bitwise-AND)

AND
0110, mEmm—
6&5= 01012 0 1 0
1 0 0

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int

Bitwise operations: & (bitwise-AND)

AND
o110, ~ EEmmE
6&5= &0101, 0 | 0
1 0 0

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int

Bitwise operations: & (bitwise-AND)

0110, B A
6&5= &0101, 0 | 0
0100, I

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int

Bitwise operations: & (bitwise-AND)

0110, B A
6&5= &0101, 0 | 0
0100, I

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int

Bitwise operations: & (bitwise-AND)

0110, BT
6&5= &0101, =4 0 | 0
0100, I

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int

Bitwise operations: | (bitwise-OR)

OR
XY [xvy
0] 0] 0]
11| -9 = o 1
1 0] 1
1 1 1

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int

Bitwise operations: | (bitwise-OR)

OR
01011, ———
"n[-9= 10111, -

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int

Bitwise operations: | (bitwise-OR)

OR
01011, ———
M1-9= 110111, T

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int

Bitwise operations: | (bitwise-OR)

OR
01011, ———
M1-9= 110111, T
11111, R——

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int

Bitwise operations: | (bitwise-OR)

OR
01011, ———
M1-9= 110111, T
11111, R——

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int

Bitwise operations: | (bitwise-OR)

OR
01011, ———
M-9= 10111, =-1 T
11111, R——

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int

Bitwise operations: ~ (bitwise-NOT)

~0 =

Convert numbers to binary (twos complement)
For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int

NOT
x| ox
0] 1
1 0]

19

Bitwise operations: ~ (bitwise-NOT)

"9 — 010012 0 1

For positive numbers, make sure to include a leading O

Convert numbers to binary (twos complement)
For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int

20

Bitwise operations: ~ (bitwise-NOT)

-9 = 01001,

Convert numbers to binary (twos complement)
For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int

NOT
x| ox
0] 1
1 0]

21

Bitwise operations: ~ (bitwise-NOT)

-9 = 01001, = 10110,

Convert numbers to binary (twos complement)
For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int

NOT
x| ox
0] 1
1 0]

22

Bitwise operations: ~ (bitwise-NOT)

-9 = 01001, = 10110,

Convert numbers to binary (twos complement)
For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int

NOT
x| ox
0] 1
1 0]

23

Bitwise operations: ~ (bitwise-NOT)

-9 = 01001, = 10110, = -10

Convert numbers to binary (twos complement)
For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int

NOT
x| ox
0] 1
1 0]

24

Bitwise operations: length differences

~ - XOR
Aq_ X V| XoY_
10 1 - 0 0 0
0] 1 1
1 0] 1
1 1 0]

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int

25

Bitwise operations: length differences

~ - XOR

10~ 1 = 01010, XY [Xev
0] 0 0]
012 0] 1 1
1 0] 1
1 1 0]

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int

26

Bitwise operations: length differences

~ - XOR

0r1= 01010, EEEEETTE
o oo
N 2 1 0 1
\ 1 1 0

What do we do here?

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int

27

Bitwise operations: length differences

~ - XOR

10~ = 01010, L e
~ 00001, o 1 1

Fill with zeros

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int

28

Bitwise operations: length differences

A _ XOR
101 = 01010, “O _ XY
~00001, 0 1 1
01011, 1 1 0

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int

29

Bitwise operations: length differences

A _ XOR
101 = 01010, “O _ XY
~00001, 0 1 1
01011, 1 1 0

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int

30

Bitwise operations: length differences

~ - XOR

10~ 1 = 01010, N T
~ 00001, =11 o 1 |
01011, 1 1 o

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int

31

An aside

What is -3 in twos complement using:
- Using 3 bits:

- Using 4 bits:

- Using 5 bits:

- Using 32 bits:

An aside: -3

Using 3 bits

101
_222110
-4 21

An aside: -3

Using 4 bits

110 1
_23222110
-84 2 1

An aside: -3

Using 5 bits

1110 1
-2423 22 2110
-168 4 2 1

An aside: -3

110 1 1110 1
052 o 10 ‘ 03 02 o1 10
8 4 2 1 16/8 4 2 1

When we add a bit, we subtract 16

An aside: -3

1101

_23 22 21 10

-8

4 2 1

—)

11101
24923 22 5110

-16

3

4 2 1

When we add a bit, we subtract 16

But we also add 16 (-8 becomes 8)

An aside

numberofbits | -3

3

© 00 N O O p~

101

1101

11101
111101
1111101
11111101
111111101
1111111101
1....101

38

An aside: -3

Using 4 bits

1101
-22 2110
-4 2 1

Bitwise operations: length differences

A - XOR
10~ 4 = 01010, X | Y | X®Y |
- 0] 0 0]
0 1 1
1 0 1
What do we do for -1? 1 1 0

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int

40

Bitwise operations: length differences

~ - XOR
0~rq4= 01010, x| v | xov.
0 0 0
11111, o 1
1 0] 1
1 1 0

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int

41

Bitwise operations: length differences

~ - XOR
0~rq4= 01010, x| v | xov.
0 0 0
11111, o 1
1 0] 1
1 1 0

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int

42

Bitwise operations: length differences

~ - XOR
0rq4= 01010, L e
11111, o 1
1 0] 1
10101, 1o

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int

43

Bitwise operations: length differences

~ - XOR
0rq4= 01010, L e
11111, o 1
1 0] 1
10101, 1o

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int

44

Bitwise operations: length differences

~ - XOR

10~rq4= 01010, B T
~ 11111, =-1 o 1
1 0 1
10101, 1o

Convert numbers to binary (twos complement)

For each digit, compute the Boolean operation

Convert resulting Boolean number back to an int

45

PRACTICE TIME - Bitwise operations

& - AND ~ _NOT
X =519 andy = =94 | x| v | xavy X | x|
0] 0 0
0 1
¢ ~X 0 1 0
1 0 0 0
* ~Yy 1 1 1
* x&
y | - OR ~ - XOR
" x|y D | v | Xy ENEEECE
0 0] 0 0 0 0
*XNy 0 1 1 0 1 1
1 0 1 1 0 1
L L 1 1 1 0

ANSWER - Bitwise operations

X =5;pandy = -9,
e ~x = 11010, = —64
« ~y=01000, = 84,
* x&y = 00101, = 54
x|y = 10111, = =94,
*x Ay =10010, = —144,

& - AND
T v xay
0 0 0
0] 1 0]

1 0 0
1 1 1
| - OR
X xvy
0 0 0
0] 1 1
1 0 1
1 1 1

~ -NOT

47

Masking

We can use bitwise operations to mask a certain number of bits in a
number.

Masking resets, sets, or inverts certain bits

Bitwise AND will reset a subset of the bits to O (or can also be seen as
copying a subset of bits and zeroing everything else out)

Bitwise OR will set a subset of the bits to 1

Bitwise XOR will invert a subset of the bits

48

Bitwise AND - Resetting bits to O

We want to reset the three least significant bits to O

Data 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Mask
& Result

What number should we bitwise-AND (&) to do this?

49

Bitwise AND - Resetting bits to O

We want to reset the three least significant bits to O

Data 0/1 o/ o/ o/ 0o/1 o/ o/
Mask 1 1 1 1 0] 0] 0]
& Result

What number should we bitwise-AND (&) to do this?

50

Bitwise AND - Resetting bits to O

We want to reset the three least significant bits to O

Bit et |5t 4 gd [2nd 4ot

Data 0/1 o/ o/ o/ 0o/1 o/ o/
Mask 1 1 1 1 0] 0] 0]
& Result

51

Bitwise AND - Resetting bits to O

For example,47,, = 0101111, we want to reset the three least
significant bits to O

Bit 6" |5 40 3¢ 2 [t o |

Data O 1 0 1 1 1 1

Mask 1 1 1 1 0] 0] 0]
& Result

& the mask

52

Bitwise AND - Resetting bits to O

For47,, = 0101111, we want to reset the three least significant
bitsto O

Bit et |5t l4n 3d [2nd 4ot
0] 1 1 1 1

Data 0] 1
Mask 1 1 1 1 0] 0] 0
& Result 0 1 0 1 o o o

& the mask

53

Bitwise AND - Resetting bits to O

For47,, = 0101111, we want to reset the three least significant
bitsto O

Bit et |5t l4n 3d [2nd 4ot
0] 1 1 1 1

Data 0] 1
Mask 1 1 1 1 0] 0] 0
& Result 0 1 0 1 o o o

40

54

PRACTICE TIME - Bitwise AND

What would the result be of applying the mask 42,, on the input 85,, using bitwise AND?.

55

ANSWER - Bitwise AND

« What would the result be of applying the mask 42, on the input 85,, using bitwise AND?

 First, we convert from decimal to binary, working with 8 bits:
* 42,0, =00101010,
® 8510 = 010101012

« We then apply the bitwise AND operation which will reset the the 7t (no real effect), 6t
4th 2nd and Ot bit of the input, resulting to 04,:

Bit |7 6" |5t 4n 3¢ 2 [t Jotn |
Data O 1 0 1 0 1 0 1
Mask O 0 1 0 1 0 1 0
Result O o) 0 (o) 0 0 0 0

56

Bitwise OR - Setting bits to 1

We want to set the first two bits to 1

Bit 7% e st 4 3d 2nd g ot

Data 0O/ 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Mask
| Result

What number should we bitwise-OR (|) to do this?

57

Bitwise OR - Setting bits to 1

We want to set the first two bits to 1

Bit 7% e st 4 3d 2nd g ot

Data 0O/ 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Mask 1 1 0 0 0 0 0 0
| Result

128 64 32 16 8 4 2 1
What number should we bitwise-OR (|) to do this?

58

Bitwise OR - Setting bits to 1

We want to set the first two bits to 1

Bit 7% e st 4 3d 2nd g ot

Data 0O/ 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Mask 1 1 0 0 0 0 0 0
| Result

128 64 32 16 8 4 2 1

-64

Bitwise OR - Setting bits to 1

For example, 47,, = 00101111, we want to set the first two bits
to 1

Bit |7t e st |4 3d 2nd gt ot
1 0 1 1 1 1

Data O 0
Mask 1 1 0 0 0 0 0 0
| Result 1 1 1 0 1 1 1 1

128 64 32 16 8 4 2 1

60

Bitwise OR - Setting bits to 1

For example, 47,, = 00101111, we want to set the first two bits
to 1

Bit |7t e st |4 3d 2nd gt ot
1 0 1 1 1 1

Data O 0
Mask 1 1 0 0 0 0 0 0
| Result 1 1 1 0 1 1 1 1

128 64 32 16 8 4 2 1

-17

61

PRACTICE TIME - Bitwise OR

What would the result be of applying the mask 17,, on the input —27;, using bitwise OR?

62

ANSWER - Bitwise OR

« What would the result be of applying the mask 17,, on the input -27,, using bitwise OR?
You can assume you have 8 bits.

 First, we convert from decimal to binary, working with 8 bits:
« 17,0 = 010001,
« —2740= 100101,

« We then apply the bitwise OR operation which will set the the 4t and Ot bit of the input
to 1, resulting to —11,4:

Bit |5 4% [gd znd gt ot |
Data 1 0 0] 1 0] 1
Mask O 1 0 0 0 1

Result 1 1 0] 1 0 1

63

Bitwise XOR - Inverting bits

We want to invert the first two and last two digits and leave the
four in middle unchanged

Bit 7% e st 4 3d 2nd g ot

Data 0/1 o/ o/ 0/1 o/ 0/1 0/1 0/1
Mask
N Result

What number should we bitwise-XOR () to do this?

64

Bitwise XOR - Inverting bits

We want to invert the first two and last two digits and leave the
four in middle unchanged

Bit 7% e st 4 3d 2nd g ot

Data 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Mask 1 1 0 0] 0] 0] 1 1
N Result

128 64 32 16 8 4 2 1
What number should we bitwise-XOR () to do this?

65

Bitwise XOR - Inverting bits

We want to invert the first two and last two digits and leave the
four in middle unchanged

Bit 7% e st 4 3d 2nd g ot

Data 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Mask 1 1 0 0] 0] 0] 1 1
N Result

128 64 32 16 8 4 2 1

-61

66

Bitwise XOR - Inverting bits

For example, 117,, = 01110101, we want to invert the first two
and last two digits and leave the four in middle unchanged

Bit |7t e st |4 3d 2nd gt ot
1 1 0] 1 0] 1

Data 0] 1
Mask 1 1 0 0] 0] 0] 1 1
N Result 1 (0] 1 1 0] 1 1 (0]

128 64 32 16 8 4 2 1

67

Bitwise XOR - Inverting bits

For example, 117,, = 01110101, we want to invert the first two
and last two digits and leave the four in middle unchanged

Bit |7t e st |4 3d 2nd gt ot
1 1 0] 1 0] 1

Data 0] 1
Mask 1 1 0 0] 0] 0] 1 1
N Result 1 (0] 1 1 0] 1 1 (0]

128 64 32 16 8 4 2 1

74

68

PRACTICE TIME - Mystery 1

What does the following Python function do?
def mysteryl(a, b):
return (a A b) == 0

69

ANSWER - Mystery 1

What does the following Python function do?
def mysteryl(a, b):
return (a A b) == 0

« The function takes two numbers (a, b), applies the bitwise XOR (a/Ab), turns it into a
decimal and compares the result to O. If it is equal to O, it returns True, otherwise it
returns False.

* |f both numbers have n bits, we have a,,_;a,,_, ...a,
« Tests if a and b are equal.

* 5,0 A510i5 0101, A 0101, = 0000, = 04,

* 5.9 Ab1ois 0101, A 0110, = 0100, = 44,

70

PRACTICE TIME - Mystery 2

What does the following Python function do? You can assume we are working with 4 bits
def mystery2(a):
return (a & (1<<3)) =0

4l

ANSWER - Mystery 2

What does the following Python function do? You can assume we are working with 32 bits
def mystery2(a):

return (a & (1<<3)) =0
« Checks whether a is negative by isolating the MSB.

72

PRACTICE TIME - Mystery 3

What does the following Python function do?
def mystery3(a,b):
return (a & (1<<b)) !'= 0

73

ANSWER - Mystery 3

What does the following Python function do?
def mystery3(a,b):

return (a & (1<<b)) =0
Tests if the b-th bitin ais 1.

74

PRACTICE TIME - Mystery 4

What does the following Python function do?
def mystery4(a):

return a | 1

75

ANSWER - Mystery 4

« What does the following Python function do?
def mystery4(a):
return a | 1

If ais even, it returns a+1, if ais odd, it leaves it unchanged.

76

bit_length()

Write a function that removes the most significant bit of a positive number

7

bit_length()

Write a function that removes the most significant bit of a positive number

78

bit_length()

Write a function that removes the most significant bit of a number

& 0 1T 1 1

How can we get this number?

79

bit_length()

Write a function that removes the most significant bit of a number

bit_length()

Returns the number of bits in a number (ignoring the sign bit)

81

bit_length()

Write a function that removes the most significant bit of a positive number

def remove_most_significant_bit(a):
bits = a.bit_length()
mask = (1 << bits - 1) -1
return a & mask

82

Why bitwise operators?

Represent many Boolean values with a single integer (e.g., in memory constrained
environments)

Are fast, so can speed up computation (if you can post your problem as a bitwise
operation)

Interacting with low-level hardware

83

Beyond

numbers

Floating point numbers

A

32 Bits

v

Mantissa

Sign ‘ Exponent

23Bts —mM8M8M8Mm™

A

«— 1Bit—> <« 8 Bits >

Single Precision
IEEE 754 Floating-Point Standard

Sign Exponent Mantissa

-« 1Bit ;- 11 Bits Y - 52 Bits

Double Precision
IEEE 754 Floating-Point Standard

85

Representing information

« But what about non-integer numbers, such as floating-point numbers, or any other type
of information, such as letters, emaoijis, colors, sound etc?

« There are different international standards that determine how binary is encoded into
other representations.

« For example, the most used standard to encode real numbers is the IEEE 754 standard.

86

Dec

Text

@ OO ~NOUDWNNG

WWNNNNNNNNRNNRSR R B B e
HOU®ENOUHLWNMOOU®E~NOWUDH WN

Hex

0 QAN T 0 OB OUAE,WNRO®

T el i ol o i el I~ B R R SR S
-0 N TN WE~NOUNDAWNRHO

c

ra
A
"B
AC
AD
nE
AF
"G
"H
AT
AJ
K
AL
"M
AN
A0
Ap
"Q
AR
rS
AT
AU
AV
AW
X
Ay
rZ
AL
A\
"]

AA

Dec
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

Oct
40
41
42
43
44
45
46
47
50
51
52
53
54
55
56
57
60
61
62
63
64
65
66
67
70
71
72
73
T4
75
76
T7

Hex
20
21
22
23
24
25
26
27
28
29
2a
2b
2c
2d
2e
2f
30
31
32
33
34
35
36
37
38
39
3a
3b
3c
3d
3e
3f

-

v 0O NOOL A WNEO N

NV Il A v

Dec
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

Oct
100
101
102
103
104
105
106
107
11@
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137

Hex
40
41
42
43
44
45
46
47
48
49
4a
4b
4c
4d
4e
4f
50
51
52
53
54
55
56
57
58
59
5a
5b
5¢
5d
S5e
5f

S TN LA X ECCH VMO VOZZIrXAUMMIOMMOO®®IPEDO

Dec
96
97
98
99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

Oct
140
141
142
143
144
145
146
147
15
151
152
153
154
155
156
157
166
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

Hex
60
61
62
63
64
65
66
67
68
69
6a
6b
6¢C
6d
6e
6f
70
71
72
73
74
75
76
77
78
79
7a
7b
7c
7d
Te
7f

‘0

W N X E< C At "0 TV O S 3 A~ X T -ADOQO T

87

Encoding text - ASCII

ASCII (American Standard Code for Information Interchange) which was established in the
‘60s and used 7 bits to represent 128 characters: These included the capital and lowercase
letters of the English alphabet, digits 0-9, punctuation and special symbols like @.

For example, 01000011 01010011 00110101 00110001 00100001 represents the text “CS51!”

88

Smileys & Emotion

face-smiling

Ne Code Browser Sample GMail SB DCM KDDI CLDR Short Name

Encoding text - Unicode N

i = s ¥ @ grinning face with big eyes
* In 1990s, Unicode expanded -
encoding to thousands of characters o & © B = grinning face with smiling eyes
to account for all different schemes - . I
individual languages used and even @ & 8 = @
includes emajis! B - _ .

« The most common implementations N
Of Unlcode are UTF_8 ,Wh|Ch was 6 | ur1rees — ast i - grinning face with sweat
designed for backward compatibility

7 | us1F923 % rolling on the floor laughing

with ASCII, and UTF-16. g |
g | Us1FGe2 o ,;:\ 1";‘;; a @ face with tears of joy
S
g | Us1F6a2 - ® slightly smiling face

10 | U+1F643 — upside-down face

How is an image represented?

Ay

e

-

How is an image represented?

/ * images are made up of
e pixels

Fis i - for a color image, each
el > pixel corresponds to an
RGB value (i.e. three
numbers)

Image features

i ::> for each pixel:

R

G
B

(0-255]
(0-255
(0-255

Encoding images

« Images consist of pixels, the smallest image unit.
« Each pixel stores a color using three color channels: Red, Green, Blue (RGB).

» Each color channel can be encoded using binary numbers
* Typical: 8 bits per channel, that is 24 bits per pixel. With 8 bits, we can represent 0,..., 255

« For example, 00000000 represents no red and 11111111 represents full red. Same for green, blue.

« Putting it together, we have triples of numbers to represent pixels. E.g.,
 Purered=11111111 00000000 00000000— (255,0,0) — only red
e Pure white=11111111 11111111 11111111— (255,255,255) - all three colors
« Pure black =00000000 00000000 00000000— (0O, O, O) — absence of all three colors

« An entire image would be represented as a matrix of pixels (width x height), each pixel's RGB
values encoded in binary

93

PRACTICE TIME - Encoding images

f we have 8 bits for each of the three color channels, how many colors can we support in a 24-bit
RGB system?

94

ANSWER - Encoding images

If we have 8 bits for each of the three color channels, how many colors can we support in a 24-bit
RGB system?

Each channel supports 28 = 256 possible values.

Thus, the total number of supported colors is 256 x256x256 = 16,777,216

That means that a 24-bit RGB system, can represent over 16 million colors.

95

RGBA format

Sometimes, the RGB format is supplemented with one more channel called the alpha channel.
The alpha channel indicates how opaque a pixel is.

By convention RGBA colors are stored in hex. For example, for alpha, 00 would be fully
transparent and FF fully opaque. For colors, 00 would be lack of color and FF would be pure color.

For example, the RGBA color #FFOOFF80 is a semi-transparent purple:
« FF,¢ stands for a full red in the red channel

* 00,4 stands for no green in the green channel

» FF,, stands for a full blue in the blue channel

« and 80,, = 128,, represents 50% opacity.

96

Practice Problems - Problem 1

« Convert the following decimal numbers to their unsigned binary representation and add them:
* 45,0+ 274,
« How many bits do you need to not have overflow?

+ Assume 6-bit signed numbers in two’'s complement representation. Add them and state whether
overflow occurs:

« 101110, + 010101,
« Convert these three numbers to decimal to double check your work.
» Add the hex numbers OxA7+0x5C

« Convert these three numbers to decimal to double check your work.

97

Practice Problems - Answer 1

« Convert the following decimal numbers to their unsigned binary representation and add them:
« 45,54 274 = 101101, + 011011, = 1001000
« How many bits do you need to not have overflow? 7

+ Assume 6-bit signed numbers in two’'s complement representation. Add them and state whether
overflow occurs:

101110, + 010101, = 000011,. No overflow
« Convert these three numbers to decimal to double check your work. -18+21=-3

* Add the hex numbers A7,, + 5Cy4
« 1034,
« Convert these three numbers to decimal to double check your work. 167,, + 92,, = 259,

98

Practice Problems - Problem 2

« What will the results of the following operations be in binary and decimal assuming 8 bits?

e —28,0> 2

99

Practice Problems - Answer 2

« What will the results of the following operations be in binary and decimal assuming 8 bits?

e —28,,> 2 = 11100100, > 2 = 11111001, = —7,,

100

Practice Problems - Problem 3

Compute the following expressions in Python:
101101012,&11110000,

01011011,]00101101,

11001010, A10101100,

101

Practice Problems - Answer 3

Compute the following expressions in Python:
101101012,&11110000, = 10110000,
01011011,|00101101, = 01111111,

11001010, A10101100, = 01100110,

102

