
BINARY ARITHMETIC

David Kauchak
CS 51 – Spring 2026

BBICS

Administrative

Assignment 1 graded

Assignment 2
Academic honesty

¤ Working with other students
¤ AI tools

Adding numbers base 10

Add: 456 and 735

Adding numbers base 10

456
 735+

?

Adding numbers base 10

1191
+

1 0 1
456

 735

Adding numbers base 5

Add: 2235 and 4145

Adding numbers base 5

2235
 4145+

?

Adding numbers base 5

2235
 4145+

1 0 1

11425

Adding numbers base 5

2235
 4145+

1 0 1

11425

Is this correct?
What numbers are these?

Adding numbers base 5

2235
 4145+

1 0 1

11425

2*25 + 2*5 + 3

4*25 + 1*5 + 4

1*125 + 1*25+4*5+2

Adding numbers base 5

2235
 4145+

1 0 1

11425

6310
10910
17210

Adding numbers base 2

Add: 00012 and 01012

Adding numbers base 2

00012
01012+

?

Adding numbers base 2

00012
01012+

01102

100

Adding numbers base 2

00012
01012+

01102

100

Is this correct?
What numbers are these?

Adding numbers base 2

00012
01012+

01102

100

110
510
610

PRACTICE TIME - Addition

Compute the following sums

¨ 0111! + 0101!
¨ 9𝐵9"# + 38"#

ANSWER - Addition

Compute the following sums

¨ 0111! + 0101!
¨ 9𝐵9"# + 38"#

 0111! + 0101! 9𝐵3"# + 38"#
 0 1 1 1 ← carry → 0 0 1

 0 1 1 1 9 B 9

 + 0 1 0 1 + 3 8

 1 1 0 0 9 F 1

Adding numbers base 2

10012
11012+

?

Adding numbers base 2

10012
11012+

101102

1 0 0 1

Computer internals

Computer internals simplified

CPU RAM

What does
it stand for?

What does
it do?

Computer internals simplified

CPU RAM

(Random Access
Memory,
aka “memory”
or “main
memory”)

Does all the work! Temporary storage

Computer internals simplified

CPU

RAM

hard drive

“the computer”

Why do we need a hard drive?

Computer internals simplified

RAM

hard drive

“the computer”

- Persistent memory
- RAM only stores data while it has power

CPU

Computer simplified

hard drive

media drive

RAM

“the computer”

display

network

input devices

CPU

Fixed length numbers

0100100100101001000111100010001010

This is more than one number. What are the numbers?

Memory

RAM

hard drive

“the computer”

CPU

Both RAM and the hard drive stores a sequence of bits

To simplify hardware, these bits are grouped into fixed length
chunks called “words”

Fixed length numbers

0100 1001 0011 0100 1001 0111 1000 1000 1010

For example, we could have a 4-bit word

Fixed length numbers

0100 1001 0011 0100 1001 0111 1000 1000 1010

For example, we could have a 4-bit word

Most computers these days have 64-bit words

Fixed length words

With 4 bits, how many values/numbers can we
represent?

Fixed length words

With 4 bits, how many values/numbers can we
represent?

24 = 16 values from 0000 up to 1111

Fixed length words

10012
11012+

101102

1 0 0 1

What happens here?

Overflow

10012
11012+

101102

1 0 0 1

Overflow: the result is
too large to represent

910
1310

2210

Overflow

10012
11012+

101102

1 0 0 1

How do we detect
overflow?

Overflow

10012
11012+

101102

1 0 0 1

Check the carry bit for
the most significant bit

Binary numbers revisited

What is -610 in binary?

One option: sign/magnitude

fixed bit length (e.g., 4 bits)

sign
0 = positive
1 = negative magnitude

One option: sign/magnitude

fixed bit length (e.g., 4 bits)

sign
0 = positive
1 = negative magnitude

What is -610 in
sign/magnitude?

One option: sign/magnitude

fixed bit length (e.g., 4 bits)

sign
0 = positive
1 = negative magnitude

What is -610 in
sign/magnitude?

1 1 1 0

One option: sign/magnitude

fixed bit length (e.g., 4 bits)

sign
0 = positive
1 = negative magnitude

What are the range
of values?

1 1 1 0

One option: sign/magnitude

fixed bit length (e.g., 4 bits)

sign
0 = positive
1 = negative magnitude

What are the range
of values?

1 1 1 0

1111 = -7 to
0111 = 7

One option: sign/magnitude

fixed bit length (e.g., 4 bits)

sign
0 = positive
1 = negative magnitude

Any problems?
1 1 1 0

One option: sign/magnitude

fixed bit length (e.g., 4 bits)

sign
0 = positive
1 = negative magnitude

What are the range
of values?

1 1 1 0

1000 = 0000

two zeros
hardware-wise, can
be more difficult

Another option: twos complement

For a number with n digits the high order bit
represents -2n-1

unsigned

20212223

signed
(twos complement)

202122-23

Twos complement

What number is it?

unsigned

20212223

signed
(twos complement)

202122-23

1 0 0 1

1 0 0 1

9

-7

Twos complement

What number is it?

unsigned

20212223

signed
(twos complement)

202122-23

1 1 1 1

1 1 1 1

15

-1

Twos complement

What number is it?

unsigned

20212223

signed
(twos complement)

202122-23

1 1 0 0

1 1 0 0

12

-4

Twos complement

How many numbers can we represent with each
approach using 4 bits?

unsigned

20212223

signed
(twos complement)

202122-23

16 (24) numbers, 0000, 0001, …., 1111
Doesn’t matter the representation!

Twos complement

How many numbers can we represent with each
approach using 32 bits?

unsigned

20212223

signed
(twos complement)

202122-23

232 ≈ 4 billion numbers

Twos complement

What is the range of numbers that we can
represent for each approach with 4 bits?

unsigned

20212223

signed
(twos complement)

202122-23

unsigned: 0, 1, … 15
signed: -8, -7, …, 7

binary
representation

unsigned

0000 0

0001 1

0010 ?

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

binary
representation

unsigned twos complement

0000 0 ?

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 10

1011 11

1100 12

1101 13

1110 14

1111 15

binary
representation

unsigned twos complement

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 ?

1001 9

1010 10

1011 11

1100 12

1101 13

1110 14

1111 15

binary
representation

unsigned twos complement

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 -8

1001 9 ?

1010 10

1011 11

1100 12

1101 13

1110 14

1111 15

binary
representation

unsigned twos complement

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 -8

1001 9 -7

1010 10 -6

1011 11 -5

1100 12 -4

1101 13 -3

1110 14 -2

1111 15 -1

binary
representation

unsigned twos complement

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 -8

1001 9 -7

1010 10 -6

1011 11 -5

1100 12 -4

1101 13 -3

1110 14 -2

1111 15 -1

How can you tell if a
number is negative?

binary
representation

unsigned twos complement

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 -8

1001 9 -7

1010 10 -6

1011 11 -5

1100 12 -4

1101 13 -3

1110 14 -2

1111 15 -1

High order bit!

A two’s complement trick

You can also calculate the value of a negative number
represented as twos complement as follows:

¤ Flip all of the bits (0 à 1 and 1à 0)
¤ Add 1
¤ The resulting number is the magnitude of the original

negative number

1101 0011

flip the bits

0010 -3

add 1

A two’s complement trick

You can also calculate the value of a negative number
represented as twos complement as follows:

¤ Flip all of the bits (0 à 1 and 1à 0)
¤ Add 1
¤ The resulting number is the magnitude of the original

negative number

1110 0010

flip the bits

0001 -2

add 1

Addition with 4-bit twos complement numbers

00012
01012+

?

Addition with 4-bit twos complement numbers

00012
01012+

01102

100

Addition with 4-bit twos complement numbers

0110
0101+

?

(Note: I’m going to stop writing the base 2 J)

Addition with 4-bit twos complement numbers

0110
0101+

1011?

1

Addition with 4-bit twos complement numbers

0110
0101+

1011?

1

6

5

-5? (11 unsigned)

Overflow! We cannot represent this number (it’s too large)

Addition with 4-bit twos complement numbers

0110
1101+

?

Addition with 4-bit twos complement numbers

0110
1101+

0011

11

Addition with 4-bit twos complement numbers

0110
1101+

0011

11

6

-3

3

ignore the last carry

Overflow in twos complement

How do you know that overflow has occurred with
twos complement numbers?

Overflow in twos complement

How do you know that overflow has occurred with twos
complement numbers?

Can only happen when adding two numbers of the same
sign

Add the numbers and discard the carry

Check the sign of the resulting number: if it differs than
the number added = overflow

Subtraction

Ideas?

Subtraction

Negate the 2nd number (flip the bits and add 1)

Add them!

PRACTICE TIME – Subtracting two’s complements

Calculate 3!" − 5!" using 4-bit two's complement
numbers.

ANSWER – Subtracting two’s complements

Calculate 3!" − 5!" using 4-bit two's complement numbers.

3!" is 0011#

Take the two’s complement of -5!" = 1011#:
¤ 5"$ = 0101!
¤ Invert 1010!
¤ Add 1: 1011!

Add them: 0011# + 1011# = 	1110# = −2!"
¤ Invert and then 1: 0001 + 1 = 0010 = 2
¤ So 1110! = −2"$

Shifting: variable length numbers

Shifting shifts the binary representation of
the number right or left

Shifting: variable length numbers

Shifting shifts the binary representation of
the number right or left

37 >> 2

number to be shifted

right shift

number of positions to shift

?

Shifting: variable length numbers

Shifting shifts the binary representation of
the number right or left

37 >> 2

37

number in binary

100101
shift right two positions
(discard bits shifting off)

1001 9

decimal form

Shifting: variable length numbers

Shifting shifts the binary representation of
the number right or left

37 >> 3 ?

Shifting: variable length numbers

Shifting shifts the binary representation of
the number right or left

37 >> 3

37

number in binary

100101
shift right three positions
(discard bits shifting off)

100 4

decimal form

Shifting 8-bit numbers

Shifting shifts the binary representation of
the number right or left

37 >> 2

37

number in binary

00100101

What is 37 as an 8-bit
binary number?

pad with 0s

Shifting 8-bit numbers

Shifting shifts the binary representation of
the number right or left

37 >> 2

37

number in binary

00100101

How do we fill in the
leftmost bits?

shift right two positions
(discard bits shifting off)

Shifting 8-bit numbers

Shifting shifts the binary representation of
the number right or left

37 >> 2

37

number in binary

00100101

How do we fill in the
leftmost bits?

00001001
shift right two positions
(discard bits shifting off)

Shifting 8-bit numbers

Shifting shifts the binary representation of
the number right or left

37 >> 2

37

number in binary

00100101
shift right two positions
(discard away bits shifting off)

00001001 9

decimal form

Shifting 8-bit numbers

Shifting shifts the binary representation of
the number right or left

15 << 2

?

Shifting 8-bit numbers

Shifting shifts the binary representation of
the number right or left

15 << 2

15

number in binary

?

Shifting 8-bit numbers

Shifting shifts the binary representation of
the number right or left

15 << 2

15

number in binary

00001111

Shifting 8-bit numbers

Shifting shifts the binary representation of
the number right or left

15 << 2

15

number in binary

00001111 ?
shift left two positions
(discard bits shifting off)

Shifting 8-bit numbers

Shifting shifts the binary representation of
the number right or left

15 << 2

15

number in binary

00001111 001111??
shift left two positions
(discard bits shifting off)

Shifting 8-bit numbers

Shifting shifts the binary representation of
the number right or left

15 << 2

15

number in binary

00001111 00111100
shift left two positions
(discard bits shifting off)

Shifting 8-bit numbers

Shifting shifts the binary representation of
the number right or left

15 << 2

15

number in binary

00001111 00111100 60

decimal form
shift left two positions
(discard bits shifting off)

Shifting mathematically: unsigned

What does left shifting by one position do
mathematically?

20212223

A B C0

Shifting mathematically: unsigned

What does left shifting by one position do
mathematically?

20212223

A B C0

20212223

B C 0A

Shifting mathematically: unsigned

What does left shifting by one position do
mathematically?

20212223

A B C0

20212223

B C 0A

= A*22 +B*21 +C *20

= A*23 +B*22 +C *21

= 2*(A*22 +B*21 +C *20)

Shifting mathematically: unsigned

What does left shifting by one position do
mathematically?

20212223

A B C0

20212223

B C 0A

= A*22 +B*21 +C *20

= A*23 +B*22 +C *21

= 2*(A*22 +B*21 +C *20)

Doubles the number!

Shifting mathematically: unsigned

What does left shifting by n positions do
mathematically?

Multiply by 2n (double n times)

Shifting mathematically: unsigned

What does right shifting by one position do
mathematically?

20212223

A B C0

Shifting mathematically: unsigned

What does right shifting by one position do
mathematically?

20212223

A B C0

20212223

0 A B0

Shifting mathematically: unsigned

What does right shifting by one position do
mathematically?

20212223

A B C0

20212223

0 A B0

= A*22 +B*21 +C *20

= A*21 +B*20

= (A* 22 +B* 21 +C * 20) div 2

Shifting mathematically: unsigned

What does right shifting by one position do
mathematically?

20212223

A B C0

20212223

0 A B0

= A*22 +B*21 +C *20

= A*21 +B*20

= (A* 22 +B* 21 +C * 20) div 2

Integer divide by 2
(// in Python)

Shifting mathematically: unsigned

What does right shifting by n positions do
mathematically?

Integer division by 2n (halve n times)

Shifting 4-bit numbers

Shifting shifts the binary representation of
the number right or left

-4 >> 1

?

Shifting 4-bit numbers

Shifting shifts the binary representation of
the number right or left

-4 >> 1

-4

number in binary

1100

What is -4 as a 4-bit
binary number?

Shifting 4-bit numbers

Shifting shifts the binary representation of
the number right or left

-4 >> 1

-4

number in binary

1100

How do we fill in the
leftmost bit?

?110
shift right one position
(discard bits shifting off)

Shifting 4-bit numbers

-4

number in binary

1100 ?110

Two types of right shifts:
- logical shift: always shift in 0s
- arithmetic shift: shift in the same as the high-

order bit

shift right one position
(discard bits shifting off)

Shifting 4-bit numbers

-4

number in binary

1100

Two types of right shifts:
- logical shift: always shift in 0s
- arithmetic shift: shift in the same as the high-

order bit

?110
shift right one position
(discard bits shifting off)

Shifting 4-bit numbers

-4

number in binary

1100 1110

Two types of right shifts:
- logical shift: always shift in 0s
- arithmetic shift: shift in the same as the high-

order bit

shift right one position
(discard bits shifting off)

Shifting 4-bit numbers

-4

number in binary

1100 1110

Two types of right shifts:
- logical shift: always shift in 0s
- arithmetic shift: shift in the same as the high-

order bit

-4 >> 1

decimal form

?
shift right one position
(discard bits shifting off)

Shifting 4-bit numbers

-4

number in binary

1100 1110

Two types of right shifts:
- logical shift: always shift in 0s
- arithmetic shift: shift in the same as the high-

order bit

-4 >> 1

decimal form

-2
shift right one position
(discard bits shifting off)

Shifting 4-bit numbers

Shifting shifts the binary representation of
the number right or left

-4 >> 2

?

Shifting 4-bit numbers

-4

number in binary

1100 1111

Two types of right shifts:
- logical shift: always shift in 0s
- arithmetic shift: shift in the same as the high-

order bit

-4 >> 2

decimal form

-1
shift right two positions
(discard bits shifting off)

Arithmetic shifting mathematically

What does right arithmetic shifting by n positions do
mathematically for signed numbers?

Integer division by 2n (halve n times)

Same thing!!

Shifting 4-bit numbers

-4

number in binary

1100 ?110

Two types of right shifts:
- logical shift: always shift in 0s
- arithmetic shift: shift in the same as the high-

order bit

shift right one position
(discard bits shifting off)

Shifting 4-bit numbers

-4

number in binary

1100 0110

Two types of right shifts:
- logical shift: always shift in 0s
- arithmetic shift: shift in the same as the high-

order bit

shift right one position
(discard bits shifting off)

Shifting 4-bit numbers

-4

number in binary

1100 0110

Two types of right shifts:
- logical shift: always shift in 0s
- arithmetic shift: shift in the same as the high-

order bit

-4 >>> 1

decimal form

?
shift right one position
(discard bits shifting off)

Shifting 4-bit numbers

-4

number in binary

1100 0110

Two types of right shifts:
- logical shift: always shift in 0s
- arithmetic shift: shift in the same as the high-

order bit

-4 >>> 1

decimal form

6
shift right one position
(discard bits shifting off)

Left shifts

Two types of left shifts?
- logical shift: always shift in 0s
- arithmetic shift: ?

-3 << 1

-3 <<< 1

?

?

arithmetic

logical

Left shifts

Two types of left shifts?
- logical shift: always shift in 0s
- arithmetic shift: ?

-3 << 1

-3 <<< 1

1101

1101

arithmetic

logical

101?

1010

(double the number)

Left shifts

Two types of left shifts?
- logical shift: always shift in 0s
- arithmetic shift: ?

-3 << 1

-3 <<< 1

1101

1101

arithmetic

logical

1010

1010

(double the number)

Only one type of left shift

Shifting summarized

Arithmetic shift:
¤ Right shift n

n shift n bits to the right
n discard right n bits
n left n bits match high-order bits of original number
n Effect: Integer division by 2n (halve n times)

¤ Left shift
n shift n bits to the left
n discard left n bits
n right n bits are 0s
n Effect: multiply by 2n (double n times)

Logical shift right:
¤ left n bits are 0s (no mathematical guarantees for negative numbers)

