BINARY ARITHMETIC

BBICS

Get connected with BBICS!

per

nd -

*":_'.

"

Rl ido
il e
=

E-I.Z e

Email list

Instagram

Mentee Application

Administrative

T
Assignment 1 graded

Assignment 2
Academic honesty

1 Working with other students
= Al tools

Adding numbers base 10

1
Add: 456 and 735

Adding numbers base 10

456
+ 735

Adding numbers base 10

101

456
+ 735

1191

Adding numbers base 5
I
Add: 223, and 414,

Adding numbers base 5
I

223.
+ 414,

¢

Adding numbers base 5
I

101

223.
+ 414,

1142,

Adding numbers base 5
I

101

2 2 35 Is this correct?

+ 4] 45 What numbers are these?

1142,

Adding numbers base 5
I

'3 2%25 + 2*5 + 3
223,

4*25 + 1*5 4+ 4
+ 414,

1142,
1%125 + 1*25+4%5+2

Adding numbers base 5
I

101

223, 63
+ 414, 109,,

1142, 172,

Adding numbers base 2
I
Add: 0001, and 0101,

Adding numbers base 2
I

0001,
+ 0101,

¢

Adding numbers base 2
I

0 01

0001,
+ 0101,

0110,

Adding numbers base 2
I

0 01

OOO] 2 Is this correct?

—+ O] O] 9 What numbers are these?

0110,

Adding numbers base 2
I

0 01

0001, 140
+ 0101, 5,

0110, 6,4

PRACTICE TIME - Addition

Compute the following sums
0 0111, + 0101,
[93916 + 3816

ANSWER - Addition

Compute the following sums
- 0111, + 0101,
O 93916 + 3816

0111, + 0101, 9B3,¢ + 384¢
O1 11 < carry — 001
011 1 9B¢9

+0101 + 38
1100 9F1

Adding numbers base 2
I

1001,
+ 1101,

¢

Adding numbers base 2
I

1 0 01

1001,
+ 1101,

10110,

Computer internals

Computer internals simplified

CPU RAM

What does
it stand for?

What does
it do?

Computer internals simplified
—

CPU RAM

(Random Access
Memory,

aka “memory”
or “main

memory”)

Does all the work! Temporary storage

Computer internals simplified
I

“the computer”

CPU

hard drive

RAM

N

Why do we need a hard drive?

Computer internals simplified

“the computer”

CPU

RAM

N

- Persistent memory
- RAM only stores data while it has power

Computer simplified

“the computer”

CPU

RAM

[

input devices

network

display

hard drive
. d
-

LafSe.)

media drive

Fixed length numbers
I

0100100100101001000111100010001010

This is more than one number. What are the numbers?

Memory

“the computer”

CPU

hard drive

RAM f— "™

Both RAM and the hard drive stores a sequence of bits

To simplify hardware, these bits are grouped into fixed length
chunks called “words”

Fixed length numbers
I

0100 1001 OO11 O100 1001 O111 1000 1000 1010

For example, we could have a 4-bit word

Fixed length numbers

0100 1001 OO11 O100 1001 O111 1000 1000 1010

For example, we could have a 4-bit word

Most computers these days have 64-bit words

Fixed length words
I

With 4 bits, how many values/numbers can we

represent?

Fixed length words
I

With 4 bits, how many values/numbers can we

represent?

24 = 16 values from 0000 up to 1111

Fixed length words
I

1 0 01

1001,
+ 1101,

10110,

What happens here?

Overflow
I

1 0 01

.IOO.IQ 9]0
+ 1101, 134

10110, 22,

Overflow: the result is
too large to represent

Overflow
I

1 0 01

1001,
+ 1101,

10110,

How do we detect
overflow?

Overflow
I

s1001
1001,

+ 1101,
10110,

Check the carry bit for
the most significant bit

Binary numbers revisited
I

What is -6, in binary?

One option: sign/magnitude
I

sign \ Y ’

magnitude

O = positive
1 = negative

\ }
|

fixed bit length (e.g., 4 bits)

One option: sign/magnitude
N

: ' What is '610 in
0 = positive : sign/magnitude?

magnitude

1 = negative

\ }
|

fixed bit length (e.g., 4 bits)

One option: sign/magnitude
N

T 1 1 0
. \ ' What is '610 in
0 = positive : sign/magnitude?

1 = negative magnitude

\ }
|

fixed bit length (e.g., 4 bits)

One option: sign/magnitude
N

1T 1 1 O
— | What are the range
0= pos?’lrigvne ! Of values?

1 = negative magnitude

\ }
|

fixed bit length (e.g., 4 bits)

One option: sign/magnitude
N

] 1 1 0]
What are the range
sign \ '
0 = positive ! Of values?
1 = negative magnitude
\ }
y 1111 = -7 to

o111 =7

fixed bit length (e.g., 4 bits)

One option: sign/magnitude
I

T 1 1 0
Any problems?
sign \ Y ’
O = positive
1 = negative magnitude

\)
|

fixed bit length (e.g., 4 bits)

One option: sign/magnitude

T 1 1 0
sign \ Y ’
O = positive
1 = negative magnitude

\

|

fixed bit length (e.g., 4 bits)

What are the range
of values?

1000 = 0000

two zeros
hardware-wise, can
be more difficult

Another option: twos complement

For a number with n digits the high order bit
represents -2

unsigned

signed

(twos complement)

Twos complement
—r

What number is it

unsigned] 0 0]
23 22 2] 20 9
.] 0 0]
signe
-/

(twos complement)

Twos complement
—r

What number is it

unsigned -I 5

signed
- 1

(twos complement)

Twos complement
—r

What number is it

unsigned]] 0 0
12
23 22 2] 20
.]] 0 0
signe
4

(twos complement)

Twos complement
—r

How many numbers can we represent with each
approach using 4 bits?

16 (24) numbers, 0000, 0001,, 1111

Doesn’t matter the representation!

unsigned

signed
(twos complement)

Twos complement
—r

How many numbers can we represent with each
approach using 32 bits?

232 = 4 billion numbers

unsigned

signed
(twos complement)

Twos complement
—r

What is the range of numbers that we can
represent for each approach with 4 bits?

unsigned: 0, 1, ... 15
signed: -8, -7, ..., 7

unsigned

signed
(twos complement)

binary
representation

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

o)
1

E

binary twos complement
representation

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

o)

—

O 00 N 00 O A W N

¢

binary twos complement
representation

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

o)

—

O 00 N 00 O A W N

0

‘DO N O 00 A W DN

binary twos complement
representation

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

o)

—

O 00 N 00 O A W N

binary twos complement
representation

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

o)

—

O 00 N 00 O A W N

binary twos complement
representation

0000 0 0
0001 1 1
0010 2 2
0011 3 £ How can you tell if a
0100 4 4 number is negative?
0101 5 5
0110 6 6
0111 7 7
1000 8 -8
1001 9 -7
1010 10 -6
1011 11 -5
1100 12 -4
1101 13 -3

1110 14 2
1111 15 -1

binary twos complement
representation

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4 High order bit!
0101 5 5
0110 6 6
0111 7 v
1000 8 -8
1001 9 7
1010 10 6
1011 11 5
1100 12 4
1101 13 3

1110 14 -2
1111 15 R

A two’s complement trick

You can also calculate the value of a negative number
represented as twos complement as follows:

Flip all of the bits (0 2 1 and 12> 0)

Add 1

The resulting number is the magnitude of the original
negative number

flip the bits add 1

1101 == 0010 == 0011 msd -3

A two’s complement trick

You can also calculate the value of a negative number
represented as twos complement as follows:

Flip all of the bits (0 2 1 and 12> 0)

Add 1

The resulting number is the magnitude of the original
negative number

flip the bits add 1

1110 m=» 0001 mw=» OO010 W= .2

Addition with 4-bit twos complement numbers

0001,
+ 0101,

¢

Addition with 4-bit twos complement numbers

0 01

0001,
+ 0101,

0110,

Addition with 4-bit twos complement numbers

0110
+ 0101

(Note: I’'m going to stop writing the base 2 ©)

Addition with 4-bit twos complement numbers

0110
+ 0101
10112

Addition with 4-bit twos complement numbers

6110 6
+ 0101 5

] O]] 2 -52 (11 unsigned)

Overflow! We cannot represent this number (it’s too large)

Addition with 4-bit twos complement numbers

0110
+ 1101

Addition with 4-bit twos complement numbers

0110
+ 1101
0011

Addition with 4-bit twos complement numbers

/1(])110 6
+ 1101 -3
0011 3

ignore the last carry

Overflow in twos complement
I

How do you know that overflow has occurred with

twos complement numbers?

Overflow in twos complement
-

How do you know that overflow has occurred with twos
complement numbers?

Can only happen when adding two numbers of the same
sign

Add the numbers and discard the carry

Check the sign of the resulting number: if it differs than
the number added = overflow

Subtraction
e

ldeas?

Subtraction

T
Negate the 2" number (flip the bits and add 1)

Add them!

PRACTICE TIME - Subtracting two’s complements

Calculate 315 — 51 using 4-bit two's complement
numbers.

ANSWER - Subtracting two’s complements

Calculate 315 — 519 using 4-bit two's complement numbers.

310 is 00112

Take the two’s complement of -5;5 = 10115:
5., = 0101,
Invert 1010,
Add 1: 1011,

Add them: 00112 + 10112 —_ 11102 —_ —210

Invert and then 1: 0001 + 1 = 0010 = 2
SO 11102 - _210

Shifting: variable length numbers
-

Shifting shifts the binary representation of
the number right or left

Shifting: variable length numbers
-

Shifting shifts the binary representation of
the number right or left

37>>2 7

number to be shifted number of positions to shift

right shift

Shifting: variable length numbers
-

Shifting shifts the binary representation of
the number right or left

37 >> 2

37 mw» 100101 == 1001 == O

shift right two positions

(discard bits shifting off) decimal form

number in binary

Shifting: variable length numbers
-

Shifting shifts the binary representation of
the number right or left

37 >>3 7

Shifting: variable length numbers
-

Shifting shifts the binary representation of
the number right or left

37 >>3

37 m= 100101 wm=» 100 w= 4

shift right three positions

(discard bits shifting off) decimal form

number in binary

Shifting 8-bit numbers
-

Shifting shifts the binary representation of
the number right or left

37 >> 2

What is 37 as an 8-bit

binary number?

37 mw) 00100101

pad with Os
number in binary

Shifting 8-bit numbers
-

Shifting shifts the binary representation of
the number right or left

37 >> 2

How do we fill in the
leftmost bits?

37 m=p 00100101 m)

shift right two positions

number in binary (discard bits shifting off)

Shifting 8-bit numbers

Shifting shifts the binary representation of
the number right or left

37 >> 2

How do we fill in the
leftmost bits?

37 mw» 00100101 == OO00T0O0T

shift right two positions

number in binary (discard bits shifting off)

Shifting 8-bit numbers

Shifting shifts the binary representation of
the number right or left

37 >> 2

37 m=) 00100101 m=» 00001001 m=» O

hift right two positions
number in binary ST g POST decimal form

(discard away bits shifting off)

Shifting 8-bit numbers

Shifting shifts the binary representation of
the number right or left

15 << 2

Shifting 8-bit numbers

Shifting shifts the binary representation of
the number right or left

15 << 2

15 m ?

number in binary

Shifting 8-bit numbers

Shifting shifts the binary representation of
the number right or left

15 << 2

15 mwp 00001111

number in binary

Shifting 8-bit numbers

Shifting shifts the binary representation of
the number right or left

15 << 2

15 m» 00001111 mp ?

shift left two positions

number in binary (discard bits shifting off)

Shifting 8-bit numbers

Shifting shifts the binary representation of
the number right or left

15 << 2

15 m=» 00001111 mw» 00111177

shift left two positions

number in binary (discard bits shifting off)

Shifting 8-bit numbers

Shifting shifts the binary representation of
the number right or left

15 << 2

15 m=» 00001111 mw» O0111100

shift left two positions

number in binary (discard bits shifting off)

Shifting 8-bit numbers

Shifting shifts the binary representation of
the number right or left

15 << 2

15 m=) OO0O0TT111 mw» OOTTTT100 m=» 60

shift left two positions

(discard bits shifting off) decimal form

number in binary

Shifting mathematically: unsigned

T =,
What does left shifting by one position do

mathematically?

Shifting mathematically: unsigned
—

What does left shifting by one position do
mathematically?

0 A B C
28 22 2! 20
A B C 0

23 22 2] 20

Shifting mathematically: unsigned

What does left shifting by one position do
mathematically?

0 A B C =A*2*4+B*2'+C*2"

23 22 2! 20

A B C 0 =A*2°4+B*2*4(C*2!

23 22 2 20 =2%(A*2* + B*2' + C*2%)

Shifting mathematically: unsigned
—

What does left shifting by one position do
mathematically?

0 A B C =A*2°4+B*2'+C*2°

23 22 2] 20
/ / / Doubles the number!
A B C 0

=A*2° + B*2°+C*2/

23 22 2 20 =2*%(A*2* +B*2' + C*2)

Shifting mathematically: unsigned

T =,
What does left shifting by n positions do

mathematically?

Multiply by 2" (double n times)

Shifting mathematically: unsigned

T =,
What does right shifting by one position do

mathematically?

Shifting mathematically: unsigned
—

What does right shifting by one position do
mathematically?

0 A B C
28 22 2! 20
0 0 A B

23 22 2] 20

Shifting mathematically: unsigned
—

What does right shifting by one position do
mathematically?

0 A B C =A*2>4+B*2'+C*2°

0 0 A B =A%2'4B*2°

23 22 21 20 =(A*2°+B*2'+C*2")div 2

0

Shifting mathematically: unsigned

What does right shifting by one position do

mathematically?

A

B

C

20

B

20

=A*2> +B*2' + C*2°

Integer divide by 2
(// in Python)

=A*2' + B*2°

—(A¥22+B*2'+C*2°) div 2

Shifting mathematically: unsigned

T [——
What does right shifting by n positions do

mathematically?

Integer division by 2" (halve n times)

Shifting 4-bit numbers

Shifting shifts the binary representation of
the number right or left

-4 >>]

?

Shifting 4-bit numbers
-

Shifting shifts the binary representation of
the number right or left

-4 >>]

What is -4 as a 4-bit
binary number?

-4 wm» 1100

number in binary

Shifting 4-bit numbers
-

Shifting shifts the binary representation of
the number right or left

-4 >>]

How do we fill in the
leftmost bit?

-4 w) 1100 == 7110

shift right one position

number in binary (discard bits shifting off)

Shifting 4-bit numbers

Two types of right shifts:

- logical shift: always shift in Os

- arithmetic shift: shift in the same as the high-
order bit

-4 w) 1100 == 7110

shift right one position

number in binary (discard bits shifting off)

Shifting 4-bit numbers

Two types of right shifts:
- logical shift: always shift in Os

- arithmetic shift: shift in the same as the high-
order bit

-4 w» 1100 == 7110

shift right one position

number in binary (discard bits shifting off)

Shifting 4-bit numbers

Two types of right shifts:
- logical shift: always shift in Os

- arithmetic shift: shift in the same as the high-
order bit

4 wep 1100 == 1110

shift right one position

number in binary (discard bits shifting off)

Shifting 4-bit numbers

Two types of right shifts:
- logical shift: always shift in Os

- arithmetic shift: shift in the same as the high-
order bit

-4 >>]

?

4 web 1100 == 1110 wed

shift right one position
(discard bits shifting off)

number in binary decimal form

Shifting 4-bit numbers

Two types of right shifts:
- logical shift: always shift in Os

- arithmetic shift: shift in the same as the high-
order bit

-4 >>]

4 wep 1100 = 1110 wwp -2

shift right one position

(discard bits shifting off) decimal form

number in binary

Shifting 4-bit numbers

Shifting shifts the binary representation of
the number right or left

-4 >> 7

?

Shifting 4-bit numbers

Two types of right shifts:
- logical shift: always shift in Os

- arithmetic shift: shift in the same as the high-
order bit

4 >> 9

4 wep 1100 w1111 wep -]

shift right two positions

(discard bits shifting off) decimal form

number in binary

Arithmetic shifting mathematically

T =,
What does right arithmetic shifting by n positions do

mathematically for signed numbers?

Integer division by 2" (halve n times)

Same thing!!

Shifting 4-bit numbers

Two types of right shifts:

- logical shift: always shift in Os

- arithmetic shift: shift in the same as the high-
order bit

-4 w) 1100 == 7110

shift right one position

number in binary (discard bits shifting off)

Shifting 4-bit numbers

Two types of right shifts:

- logical shift: always shift in Os

- arithmetic shift: shift in the same as the high-
order bit

-4 w» 1100 == 0110

shift right one position

number in binary (discard bits shifting off)

Shifting 4-bit numbers

Two types of right shifts:

- logical shift: always shift in Os

- arithmetic shift: shift in the same as the high-
order bit

4 >>>]

-4 w) 1100 wm=» 0110 w7

shift right one position

(discard bits shifting off) decimal form

number in binary

Shifting 4-bit numbers

Two types of right shifts:

- logical shift: always shift in Os

- arithmetic shift: shift in the same as the high-
order bit

4 >>>]

-4 wp 17100 wwp 0110 w6

shift right one position

(discard bits shifting off) decimal form

number in binary

Left shifts

Two types of left shifts?
- logical shift: always shift in Os
- arithmetic shift: ¢

arithmetic

3 <<] ?

logical

Bk 7

Left shifts

Two types of left shifts?
- logical shift: always shift in Os
- arithmetic shift: ¢

arithmetic

_3 <L] 1 1 01 —) 1 01 ? (double the number)

logical

3<<< 1 1M01 == 1010

Left shifts

Two types of left shifts?
- logical shift: always shift in Os
- arithmetic shift: ¢

arithmetic

_3 <L] 1 1 01 —) 1 01 O (double the number)

logical

<< 1 1101 == 1010

Only one type of left shift

Shifting summarized

Arithmetic shift:

Right shift n
shift n bits to the right
discard right n bits

left n bits match high-order bits of original number
Effect: Integer division by 2" (halve n times)

Left shift
shift n bits to the left
discard left n bits
right n bits are Os
Effect: multiply by 2" (double n times)

Logical shift right:

left n bits are Os (no mathematical guarantees for negative numbers)

