

Numeral Systems

CS51 – Spring 2026

Administrative

Assignment 1

Assignment 2

Lab tomorrow

Practice problems at the end of slides

Slack/canvas

Booleans in Python

bool type in python: True or False

The comparison operators ==, !=, >, <, >=, <= return bools. For example,

- $10 < 0$ evaluates to False
- $11 \geq 11$ evaluates to True
- $11 > 11.0$ evaluates to False
- $10 == 10.0$ evaluates to True
- $10 != 10.0$ evaluates to False

Boolean Algebra in Python

We can combine bools and logical operators in Boolean expressions, for example, to evaluate them in **conditionals** (if statements) and **loops** (for and while).

Python supports three logical operators:

- not for negation (i.e., \neg)
- and for conjunction (i.e., \wedge)
- or for disjunction (i.e., \vee)

Short-circuit evaluation in Python

Python supports **short-circuiting**: evaluates a Boolean expression from left to right and **stops evaluation** once the truth can be determined

When could this happen with a Boolean expression?

Short-circuit evaluation in Python

Python supports **short-circuiting**: evaluates a Boolean expression from left to right and **stops evaluation** once the truth can be determined

If any part of an and is False, the expression is False

False and ...

If any part of an or is True, the expression is True

True or ...

Short-circuit evaluation in Python

Python supports **short-circuiting**: evaluates a Boolean expression from left to right and **stops evaluation** once the truth can be determined

What is the benefit of this?

Short-circuit evaluation and optimization

if $x == 0$ or $(x-1)/x > 0.5$: ...

How does short-circuiting help us?

Short-circuit evaluation and optimization

if $x == 0$ or $(x-1)/x > 0.5$: ...

When x is equal to 0, evaluating would cause a divide-by-zero error. But the second disjunct isn't evaluated when x is equal to 0 because the first operand was True!

Short-circuit evaluation and optimization

It also can be computationally faster:

```
if (simpleOrOftenFalse() and complexOrOftenTrue()):...
```

PRACTICE TIME – Boolean expressions

Assume the variable `x` currently stores the value 47. What will the following expressions evaluate to?

- True and not False
- not True or not False
- True and not 0
- False or not 1
- $2 < x$ and $x < 50$
- $x > 2$ and < 20
- $(2 > x)$ or $(x == 47)$
- not $(x == x)$
- not $(x != 3)$
- $x < 0$ and $(y/x) == 3$
- $x > 0$ or $(y/x) == 3$

ANSWER – Boolean expressions

Assume the variable `x` currently stores the value 47. What will the following expressions evaluate to?

- True and not False - True
- not True or not False - True
- True and not 0 – True
- False or not 1 - False
- `2 < x and x < 50` - True
- `x > 2 and < 20` – Invalid syntax
- `(2 > x) or (x == 47)` - True
- not `(x == x)` - False
- not `(x != 3)` – False
- `x < 0 and (y/x) == 3` – False
- `x > 0 or (y/x) == 3` - True

PRACTICE TIME – Conditionals

Rewrite the following code to make it cleaner and avoid the use of nested if statements:

```
def get_discount(member, purchase_amount):  
    if member == True:  
        if purchase_amount > 100:  
            return "Discount applied"  
        else:  
            return "No discount"  
    else:  
        if purchase_amount > 200:  
            return "Discount applied"  
        else:  
            return "No discount"
```

```
print(get_discount(True, 120)) # Expected: "Discount applied"  
print(get_discount(True, 80)) # Expected: "No discount"  
print(get_discount(False, 220)) # Expected: "Discount applied"  
print(get_discount(False, 50)) # Expected: "No discount"
```

ANSWER – Conditionals

- Rewrite the following code to make it cleaner and avoid the use of nested if statements:

```
def get_discount(member, purchase_amount):  
    if (purchase_amount > 200) or (member and purchase_amount > 100):  
        return "Discount applied"  
    else:  
        return "No discount"  
  
print(get_discount(True, 120)) # Expected: "Discount applied" print(get_discount(True, 80)) # Expected: "No  
discount" print(get_discount(False, 220)) # Expected: "Discount applied" print(get_discount(False, 50)) # Expected:  
"No discount"
```

Numbers

What number is 9247?

Numbers

What number is $9247_{10} =$

$$= 9000 + 200 + 40 + 7$$

$$= 9 \times 10^3 + 2 \times 10^2 + 4 \times 10^1 + 7 \times 10^0$$

Decimal numbers: base 10

For any base, the digits (individual numbers in the number) range from 0 to base - 1

Base 10 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Decimal numbers: base 10

n-digit number

$d_{n-1} \dots d_2 d_1 d_0$ represents the integer

$$d_{n-1} 10^{n-1} + \dots + d_2 10^2 + d_1 10^1 + d_0 10^0$$

$10^3 = 1000$	$10^2 = 100$	$10^1 = 10$	$10^0 = 1$
9	2	4	7

Decimal numbers: base 10

$d_{n-1} \dots d_2 d_1 d_0$ represents the integer

$$d_{n-1} 10^{n-1} + \dots + d_2 10^2 + d_1 10^1 + d_0 10^0$$

$10^3 = 1000$	$10^2 = 100$	$10^1 = 10$	$10^0 = 1$
9	2	4	7

$$\begin{aligned}9247_{10} \\= 9 \times 10^3 + 2 \times 10^2 + 4 \times 10^1 + 7 \times 10^0\end{aligned}$$

Decimal numbers: base 10

$d_{n-1} \dots d_2 d_1 d_0$ represents the integer

$$d_{n-1} 10^{n-1} + \dots + d_2 10^2 + d_1 10^1 + d_0 10^0$$

For a d digit decimal number, what are the range of values? E.g., three digits?

Decimal numbers: base 10

$d_{n-1} \dots d_2 d_1 d_0$ represents the integer

$$d_{n-1} 10^{n-1} + \dots + d_2 10^2 + d_1 10^1 + d_0 10^0$$

$$0, 1, 2, 3, \dots, 10^n - 1$$

E.g., for 3 digit numbers: $0, 1, 2, 3, \dots, 10^3 - 1 = 0 \dots 999$

Numbers in other bases

What are valid digits for base 5 numbers?

Number in other bases

For any base, the digits (individual numbers in the number) range from 0 to base - 1

Base 5 digits: 0, 1, 2, 3, 4

Numbers in other bases

What number is 243_5 ?

Numbers in other bases

What number is 243_5 ?

$5^2 = 25$	$5^1 = 5$	$5^0 = 1$
2	4	3

Numbers in other bases

What number is 243_5 ?

$5^2 = 25$	$5^1 = 5$	$5^0 = 1$
2	4	3

$$243_5 = 2 \times 5^2 + 4 \times 5^1 + 3 \times 5^0$$

$$= 2 \times 25 + 4 \times 5 + 3 = 73_{10}$$

Numbers in other bases

$d_{n-1} \dots d_2 d_1 d_0$ represents the integer

$$d_{n-1} 5^{n-1} + \dots + d_2 5^2 + d_1 5^1 + d_0 5^0$$

For a d digit base 5 number, what are the range of values? E.g., three digits?

Numbers in other bases

$d_{n-1} \dots d_2 d_1 d_0$ represents the integer

$$d_{n-1} 5^{n-1} + \dots + d_2 5^2 + d_1 5^1 + d_0 5^0$$

$$0, 1, 2, 3, \dots, 5^n - 1$$

E.g., for 3 digit numbers: $0, 1, 2, 3, \dots, 5^3 - 1 = 0 \dots 124$

Numbers in other bases

$d_{n-1} \dots d_2 d_1 d_0$ represents the integer

$$d_{n-1}b^{n-1} + \dots + d_2 b^2 + d_1 b^1 + d_0 b^0$$

For a d digit base b number, what are the range of values? E.g., three digits?

Numbers in other bases

$d_{n-1} \dots d_2 d_1 d_0$ represents the integer

$$d_{n-1}b^{n-1} + \dots + d_2 b^2 + d_1 b^1 + d_0 b^0$$

$$0, 1, 2, 3, \dots, b^n - 1$$

E.g., for 3 digit numbers: $0, 1, 2, 3, \dots, b^3 - 1$

Numbers in other bases

What are valid digits for base 2 numbers?

Number in other bases

For any base, the digits (individual numbers in the number) range from 0 to base - 1

Base 2 digits: 0, 1

Numbers in other bases

What number is 1101_2 ?

Numbers in other bases

What number is 1101_2 ?

$2^3 = 8$	$2^2 = 4$	$2^1 = 10$	$2^0 = 1$
1	1	0	1

Numbers in other bases

What number is 1101_2 ?

$2^3 = 8$	$2^2 = 4$	$2^1 = 10$	$2^0 = 1$
1	1	0	1

$$\begin{aligned}1101_2 &= 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 \\&= 8 + 4 + 1 = 13_{10}\end{aligned}$$

Binary numbers

$b_{n-1} \dots b_2 b_1 b_0$ represents the integer $b_{n-1} 2^{n-1} + \dots + b_2 2^2 + b_1 2^1 + b_0 2^0$

For example, the binary number 10100111_2 can be written as:

$2^7 = 128$	$2^6 = 64$	$2^5 = 32$	$2^4 = 16$	$2^3 = 8$	$2^2 = 4$	$2^1 = 2$	$2^0 = 1$
1	0	1	0	0	1	1	1

$$1 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

This is equal to the decimal representation $128 + 32 + 4 + 2 + 1 = 167_{10}$

binary numbers

For a d digit base b number, what are the range of values? E.g., three digits?

binary numbers

For a d digit binary number, what are the range of values? E.g., four digits?

$$0, 1, 2, 3, \dots, 2^n - 1$$

E.g., for 4 digit numbers: $0, 1, 2, 3, \dots, 2^4 - 1 = 0 \dots 15$

Binary numbers and their decimal equivalents

1-bit binary	2-bit binary	3-bit binary	4-bit binary	Decimal equivalent
0	00	000	0000	0
1	01	001	0001	1
	10	010	0010	2
	11	011	0011	3
		100	0100	4
		101	0101	5
		110	0110	6
		111	0111	7
			1000	8
			1001	9
			1010	10
			1011	11
			1100	12
			1101	13
			1110	14
			1111	15

PRACTICE TIME

- Convert the following binary numbers to their decimal representation:
 - 1010_2
 - 1111_2
 - 10011011_2
 - 1100011_2
 - 100010_2

PRACTICE TIME - ANSWER

- Convert the following binary numbers to their decimal representation:

- $1010_2 = 1 \times 2^3 + 1 \times 2^1 = 8 + 2 = 10_{10}$

- $1111_2 = 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 8 + 4 + 2 + 1 = 15_{10}$

- $10011011_2 = 1 \times 2^7 + 0 \times 2^6 + 0 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 128 + 16 + 8 + 2 + 1 = 155_{10}$

- $1100011_2 = 1 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 99_{10}$

- $100010_2 = 1 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 32 + 2 = 34_{10}$

Decimal to binary conversion

$2^7 =$	$2^6 =$	$2^5 =$	$2^4 =$	$2^3 =$	$2^2 =$	$2^1 =$	$2^0 =$
128	64	32	16	8	4	2	1

What is 55_{10} in binary?

Decimal to binary conversion

$2^7 =$	$2^6 =$	$2^5 =$	$2^4 =$	$2^3 =$	$2^2 =$	$2^1 =$	$2^0 =$
128	64	32	16	8	4	2	1

$$32 + 16 + 4 + 2 + 1 = 55$$

What is 55_{10} in binary?

Decimal to binary conversion

$2^7 =$	$2^6 =$	$2^5 =$	$2^4 =$	$2^3 =$	$2^2 =$	$2^1 =$	$2^0 =$
128	64	32	16	8	4	2	1
		1	1	0	1	1	1

$$32 + 16 + 4 + 2 + 1 = 55 = 110111_2$$

What is 55_{10} in binary?

Decimal to binary conversion

$2^7 =$	$2^6 =$	$2^5 =$	$2^4 =$	$2^3 =$	$2^2 =$	$2^1 =$	$2^0 =$
128	64	32	16	8	4	2	1

What is 84_{10} in binary?

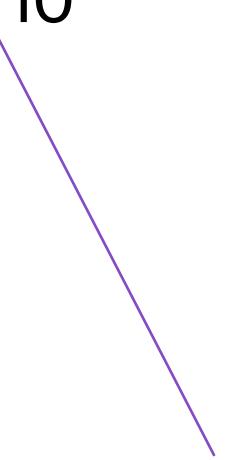
Decimal to binary conversion

$2^7 =$	$2^6 =$	$2^5 =$	$2^4 =$	$2^3 =$	$2^2 =$	$2^1 =$	$2^0 =$
128	64	32	16	8	4	2	1

$$64 + 16 + 4 = 84$$

What is 84_{10} in binary?

Decimal to binary conversion


$2^7 =$	$2^6 =$	$2^5 =$	$2^4 =$	$2^3 =$	$2^2 =$	$2^1 =$	$2^0 =$
128	64	32	16	8	4	2	1
	1	0	1	0	1	0	0

$$32 + 16 + 4 = 84 = 1010100_2$$

What is 84_{10} in binary?

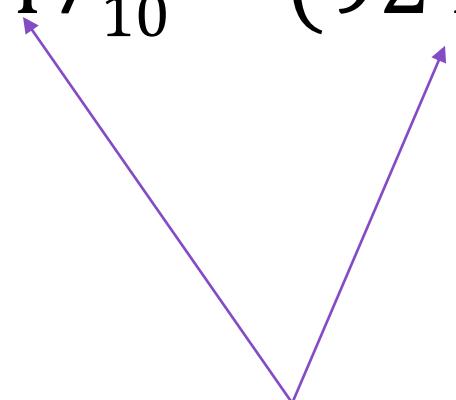
Decimal to binary: another approach

$$9247_{10} = 9 \times 10^3 + 2 \times 10^2 + 4 \times 10^1 + 7 \times 10^0$$

How can we get this digit?

Decimal to binary: another approach

$$9247_{10} = 9 \times 10^3 + 2 \times 10^2 + 4 \times 10^1 + 7 \times 10^0$$

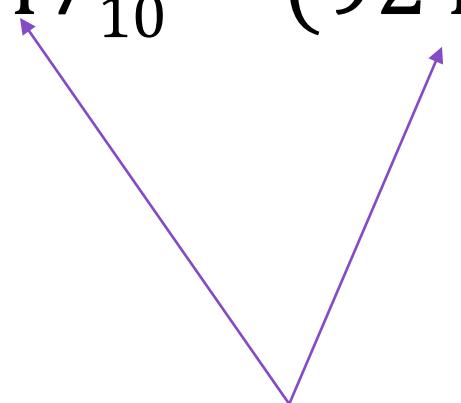

How can we get this digit?

Modulo (remainder) by the base (10)

Decimal to binary: another approach

$$9247_{10} = 9 \times 10^3 + 2 \times 10^2 + 4 \times 10^1 + 7 \times 10^0$$

$$9247_{10} = (924) * 10 + 7$$

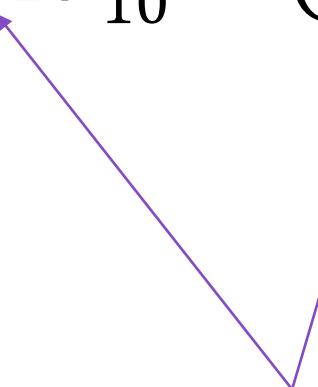


How can we get this digit?

Decimal to binary: another approach

$$9247_{10} = 9 \times 10^3 + 2 \times 10^2 + 4 \times 10^1 + 7 \times 10^0$$

$$9247_{10} = (924) * 10 + 7$$

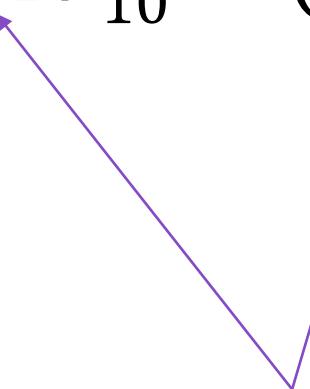

Divide by 10 (base) then
Modulo (remainder) by the base (10)

How can we get this digit?

Decimal to binary: another approach

$$9247_{10} = 9 \times 10^3 + 2 \times 10^2 + 4 \times 10^1 + 7 \times 10^0$$

$$9247_{10} = (92) \times 10^2 + 4 \times 10 + 7$$



How can we get this digit?

Decimal to binary: another approach

$$9247_{10} = 9 \times 10^3 + 2 \times 10^2 + 4 \times 10^1 + 7 \times 10^0$$

$$9247_{10} = (92) \times 10^2 + 4 \times 10 + 7$$

Divide by 10^2 then
Modulo (remainder) by the base (10)

How can we get this digit?

Decimal to binary: another approach

$$\begin{aligned}9247_{10} &= 9 \times 10^3 + 2 \times 10^2 + 4 \times 10^1 + 7 \times \\10^0 &= 9 \times 10^3 + 2 \times 10^2 + 4 \times 10^1 + 7 \\&= (9 \times 10^2 + 2 \times 10^1 + 4) \times 10 + 7 \\&= ((9 \times 10) + 2) \times 10 + 4 \times 10 + 7\end{aligned}$$

Decimal to binary: another approach

$$\begin{aligned}9247_{10} &= 9 \times 10^3 + 2 \times 10^2 + 4 \times 10^1 + 7 \times \\10^0 &= ((9 \times 10) + 2) \times 10 + 4 \\&\quad + 7\end{aligned}$$

Another way to build up a number:

- Remainder by base to get next (right-most) digit
- Divide by base
- Repeat

Decimal to binary: another approach

- Repeatedly divide the number by 2. The remainder goes to each column, from right to left.
- Example: Convert the decimal number 84_{10} to binary.

Divide by 2	Remainder
84	

LSB

MSB

MSB

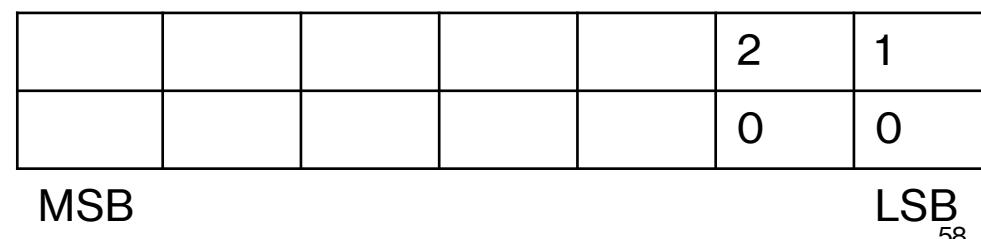
LSB

Decimal to binary conversion

- Repeatedly divide the number by 2. The remainder goes to each column, from right to left.
- Example: Convert the decimal number 84_{10} to binary.
 - $\frac{84}{2} = 42$ with a remainder of 0, so 0 goes in the 1's column.

Divide by 2	Remainder
84	0
42	

LSB ↑ MSB


						1
						0

MSB LSB

Decimal to binary conversion

- Repeatedly divide the number by 2. The remainder goes to each column, from right to left.
- Example: Convert the decimal number 84_{10} to binary.
 - $\frac{84}{2} = 42$ with a remainder of 0, so 0 goes in the 1's column.
 - $\frac{42}{2} = 21$ with a remainder of 0, so 0 goes in the 2's column.

Divide by 2	Remainder	
84	0	LSB
42	0	
21		
		MSB

Decimal to binary conversion

- Repeatedly divide the number by 2. The remainder goes to each column, from right to left.
- Example: Convert the decimal number 84_{10} to binary.
 - $\frac{84}{2} = 42$ with a remainder of 0, so 0 goes in the 1's column.
 - $\frac{42}{2} = 21$ with a remainder of 0, so 0 goes in the 2's column.
 - $\frac{21}{2} = 10$ with a remainder of 1, so there is a 1 going to the 4s column.

Divide by 2	Remainder
84	0
42	0
21	1

LSB ↑ MSB

				4	2	1
				1	0	0

MSB LSB

Decimal to binary conversion

- Repeatedly divide the number by 2. The remainder goes to each column, from right to left.
- Example: Convert the decimal number 84_{10} to binary.
 - $\frac{84}{2} = 42$ with a remainder of 0, so 0 goes in the 1's column.
 - $\frac{42}{2} = 21$ with a remainder of 0, so 0 goes in the 2's column.
 - $\frac{21}{2} = 10$ with a remainder of 1, so there is a 1 going to the 4s column.
 - $\frac{10}{2} = 5$ with a remainder of 0, so there is a 0 in the 8's column.

Divide by 2	Remainder
84	0
42	0
21	1
10	0
5	

LSB ↑ MSB

			8	4	2	1
			0	1	0	0

MSB LSB

Decimal to binary conversion

- Repeatedly divide the number by 2. The remainder goes to each column, from right to left.
- Example: Convert the decimal number 84_{10} to binary.
 - $\frac{84}{2} = 42$ with a remainder of 0, so 0 goes in the 1's column.
 - $\frac{42}{2} = 21$ with a remainder of 0, so 0 goes in the 2's column.
 - $\frac{21}{2} = 10$ with a remainder of 1, so there is a 1 going to the 4s column.
 - $\frac{10}{2} = 5$ with a remainder of 0, so there is a 0 in the 8's column.
 - $\frac{5}{2} = 2$ with a remainder of 1, so there is a 1 going to the 16's column.

Divide by 2	Remainder
84	0
42	0
21	1
10	0
5	1
2	

LSB ↑ MSB

		16	8	4	2	1
		1	0	1	0	0

MSB LSB

Decimal to binary conversion

- Repeatedly divide the number by 2. The remainder goes to each column, from right to left.
- Example: Convert the decimal number 84_{10} to binary.
 - $\frac{84}{2} = 42$ with a remainder of 0, so 0 goes in the 1's column.
 - $\frac{42}{2} = 21$ with a remainder of 0, so 0 goes in the 2's column.
 - $\frac{21}{2} = 10$ with a remainder of 1, so there is a 1 going to the 4s column.
 - $\frac{10}{2} = 5$ with a remainder of 0, so there is a 0 in the 8's column.
 - $\frac{5}{2} = 2$ with a remainder of 1, so there is a 1 going to the 16's column.
 - $\frac{2}{2} = 1$, with a remainder of 0, so 0 goes in the 32's column.

Divide by 2	Remainder
84	0
42	0
21	1
10	0
5	1
2	0
1	

LSB ↑ MSB

	32	16	8	4	2	1
	0	1	0	1	0	0

MSB LSB₆₂

Decimal to binary conversion

- Repeatedly divide the number by 2. The remainder goes to each column, from right to left.
- Example: Convert the decimal number 84_{10} to binary.
 - $\frac{84}{2} = 42$ with a remainder of 0, so 0 goes in the 1's column.
 - $\frac{42}{2} = 21$ with a remainder of 0, so 0 goes in the 2's column.
 - $\frac{21}{2} = 10$ with a remainder of 1, so there is a 1 going to the 4s column.
 - $\frac{10}{2} = 5$ with a remainder of 0, so there is a 0 in the 8's column.
 - $\frac{5}{2} = 2$ with a remainder of 1, so there is a 1 going to the 16's column.
 - $\frac{2}{2} = 1$, with a remainder of 0, so 0 goes in the 32's column.
 - $\frac{1}{2} = 0$, with a remainder of 1, so 1 goes in the 64's column.

Divide by 2	Remainder
84	0
42	0
21	1
10	0
5	1
2	0
1	1

LSB ↑ MSB

64	32	16	8	4	2	1
1	0	1	0	1	0	0

MSB LSB

Decimal to binary conversion

- Repeatedly divide the number by 2. The remainder goes to each column, from right to left.
- Example: Convert the decimal number 84_{10} to binary.
 - $\frac{84}{2} = 42$ with a remainder of 0, so 0 goes in the 1's column.
 - $\frac{42}{2} = 21$ with a remainder of 0, so 0 goes in the 2's column.
 - $\frac{21}{2} = 10$ with a remainder of 1, so there is a 1 going to the 4s column.
 - $\frac{10}{2} = 5$ with a remainder of 0, so there is a 0 in the 8's column.
 - $\frac{5}{2} = 2$ with a remainder of 1, so there is a 1 going to the 16's column.
 - $\frac{2}{2} = 1$, with a remainder of 0, so 0 goes in the 32's column.
 - $\frac{1}{2} = 0$, with a remainder of 1, so 1 goes in the 64's column.
- Putting this all together, $84_{10} = 1010100_2$.

Divide by 2	Remainder
84	0
42	0
21	1
10	0
5	1
2	0
1	1

LSB ↑ MSB

64	32	16	8	4	2	1
1	0	1	0	1	0	0

MSB LSB₆₄

PRACTICE TIME

- Convert the following decimal numbers to their binary representation.

- 125_{10}
- 339_{10}
- 75_{10}

$2^8 =$	$2^7 =$	$2^6 =$	$2^5 =$	$2^4 =$	$2^3 =$	$2^2 =$	$2^1 =$	$2^0 =$
256	128	64	32	16	8	4	2	1

PRACTICE TIME

- Convert the following decimal numbers to their binary representation.

- $125_{10} = 64 + 32 + 16 + 8 + 4 + 0 + 1 = 1111101_2$

- $339_{10} = 256 + 0 + 64 + 0 + 16 + 0 \pm 0 + 2 + 1 = 101010011_2$

- $75_{10} = 64 + 0 + 0 + 8 + 0 + 2 + 1 = 1001011_2$

$2^8 =$ 256	$2^7 =$ 128	$2^6 =$ 64	$2^5 =$ 32	$2^4 =$ 16	$2^3 =$ 8	$2^2 =$ 4	$2^1 =$ 2	$2^0 =$ 1
----------------	----------------	---------------	---------------	---------------	--------------	--------------	--------------	--------------

PRACTICE TIME - ANSWER

- Convert the following decimal numbers to their binary representation.

$$125_{10} = 1111101_2$$

$$339_{10} = 101010011_2$$

$$75_{10} = 1001011_2$$

Divide by 2	Remainder
125	1
62	0
31	1
15	1
7	1
3	1
1	1

LSB ↑
MSB ↑

Divide by 2	Remainder
339	1
169	1
84	0
42	0
21	1
10	0
5	1
2	0
1	1

LSB ↑
MSB ↑

Divide by 2	Remainder
75	1
37	1
18	0
9	1
4	0
2	0
1	1

LSB ↑
MSB ↑

Hexadecimal

What are valid digits for base 16 numbers (aka, hexadecimal numbers)?

Hexadecimal numbers

For any base, the digits (individual numbers in the number) range from 0 to base - 1

Base 16 digits: 0, 1, 2, 3, 4, ..., 15

Hexadecimal numbers

For any base, the digits (individual numbers in the number) range from 0 to base - 1

Base 16 digits: 0, 1, 2, 3, 4, ..., 15

Any problems with this?

Hexadecimal numbers

For any base, the digits (individual numbers in the number) range from 0 to base - 1

Base 16 digits: 0, 1, 2, ..., 9, A, B, C, D, E, F

10, 11, 12, 13, 14, 15

Hexadecimal numbers

A, B, C, D, E, F
10, 11, 12, 13, 14, 15

What number is $2A7_{16}$?

Hexadecimal numbers

A, B, C, D, E, F
10, 11, 12, 13, 14, 15

What number is $2A7_{16}$?

Hexadecimal numbers

A, B, C, D, E, F
10, 11, 12, 13, 14, 15

What number is $2A7_{16}$?

$16^2 = 256$	$16^1 = 16$	$16^0 = 1$
2	A	7

Hexadecimal numbers

A, B, C, D, E, F
10, 11, 12, 13, 14, 15

What number is $2A7_{16}$?

$16^2 = 256$	$16^1 = 16$	$16^0 = 1$
2	A	7

$$2A7_{16} = 2 \times 16^2 + 10 \times 16^1 + 7 \times 16^0$$

$$= 2 \times 256 + 10 \times 16 + 7 = 679_{10}$$

Hexadecimal numbers

$d_{n-1} \dots d_2 d_1 d_0$ represents the integer

$$d_{n-1} 16^{n-1} + \dots + d_2 16^2 + d_1 16 + d_0 16^0$$

For a d digit hexadecimal number, what are the range of values? E.g., three digits?

Hexadecimal numbers

$d_{n-1} \dots d_2 d_1 d_0$ represents the integer

$$d_{n-1} 16^{n-1} + \dots + d_2 16^2 + d_1 16 + d_0 16^0$$

$$0, 1, 2, 3, \dots, 16^n - 1$$

E.g., for 3 digit numbers: $0, 1, 2, 3, \dots, 16^3 - 1 = 0 \dots 4095$

Hexadecimal numbers

Hex numbers are sometimes preceded by 0x to be distinguished from decimal numbers

0x15 is 15_{16} which is equal to 21_{10} and not 15_{10} .

Equivalence across number systems

Hexadecimal digit	Binary equivalent	Decimal equivalent
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
A	1010	10
B	1011	11
C	1100	12
D	1101	13
E	1110	14
F	1111	15

PRACTICE TIME

- Convert the following hexadecimal numbers to their decimal representation.
 - $32A_{16}$
 - $D1CE_{16}$
 - $1B7F_{16}$
 - 47_{16}

ANSWER

- Convert the following hexadecimal numbers to their decimal representation.
 - $32A_{16} = 3 \times 16^2 + 2 \times 16^1 + 10 \times 16^0 = 810_{10}$
 - $D1CE_{16} = 13 \times 16^3 + 1 \times 16^2 + 12 \times 16^1 + 14 \times 16^0 = 53710_{10}$
 - $1B7F_{16} = 1 \times 16^3 + 11 \times 16^2 + 7 \times 16^1 + 15 \times 16^0 = 7039_{10}$
 - $47_{16} = 4 \times 16^1 + 7 \times 16^0 = 71_{10}$

Decimal to hexadecimal conversion

- Repeatedly divide by 16 and leave remainder as LSB
- Example: Convert the decimal number 333_{10} to hexadecimal.

Divide by 16	Remainder
333	

LSB

MSB

Decimal to hexadecimal conversion

- Repeatedly divide by 16 and leave remainder as LSB
- Example: Convert the decimal number 333_{10} to hexadecimal.

- $\frac{333}{16} = 20$ with a remainder of $13_{10} = D_{16}$ which goes in the 1's column.

Divide by 16	Remainder
333	$13_{10} = D_{16}$
20	

LSB

MSB

		1
		D

Decimal to hexadecimal conversion

- Repeatedly divide by 16 and leave remainder as LSB
- Example: Convert the decimal number 333_{10} to hexadecimal.

- $\frac{333}{16} = 20$ with a remainder of $13_{10} = D_{16}$ which goes in the 1's column.
- $\frac{20}{16} = 1$ with a remainder of 4, so 4 goes in the 16's column.

Divide by 16	Remainder
333	$13_{10} = D_{16}$
20	$4_{10} = 4_{16}$
1	

LSB

MSB

	16	1
	4	D

Decimal to hexadecimal conversion

- Repeatedly divide by 16 and leave remainder as LSB
- Example: Convert the decimal number 333_{10} to hexadecimal.

- $\frac{333}{16} = 20$ with a remainder of $13_{10} = D_{16}$ which goes in the 1's column.
- $\frac{20}{16} = 1$ with a remainder of 4, so 4 goes in the 16's column.
- $\frac{1}{16} = 0$ with a remainder of 1, so there is a 1 going to the 256s column.

Divide by 16	Remainder
333	$13_{10} = D_{16}$
20	$4_{10} = 4_{16}$
1	$1_{10} = 1_{16}$

LSB

MSB

256	16	1
1	4	D

Decimal to hexadecimal conversion

- Repeatedly divide by 16 and leave remainder as LSB
- Example: Convert the decimal number 333_{10} to hexadecimal.

- $\frac{333}{16} = 20$ with a remainder of $13_{10} = D_{16}$ which goes in the 1's column.
- $\frac{20}{16} = 1$ with a remainder of 4, so 4 goes in the 16's column.
- $\frac{1}{16} = 0$ with a remainder of 1, so there is a 1 going to the 256s column.
- Putting this all together, $333_{10} = 14D_{16}$.

Divide by 16	Remainder
333	$13_{10} = D_{16}$
20	$4_{10} = 4_{16}$
1	$1_{10} = 1_{16}$

LSB

MSB

256	16	1
1	4	D

PRACTICE TIME

- Convert the following decimal numbers to their hexadecimal representation.
 - 2546_{10}
 - 1457_{10}
 - 269_{10}
 - 47_{10}

ANSWER

- Convert the following decimal numbers to their hexadecimal representation.

$$2546_{10} = 9F2$$

$$1457_{10} = 5B1$$

$$269_{10} = 10D$$

$$47_{10} = 2F$$

Divide by 16	Remainder
2546	$2_{10} = 2_{16}$
159	$15_{10} = F_{16}$
9	$9_{10} = 9_{16}$

Divide by 16	Remainder
1457	$1_{10} = 1_{16}$
91	$11_{10} = B_{16}$
5	$5_{10} = 5_{16}$

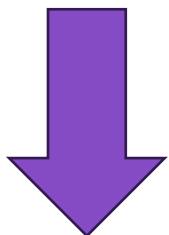
Divide by 16	Remainder
269	$13_{10} = D_{16}$
16	$0_{10} = 0_{16}$
1	$1_{10} = 1_{16}$

Divide by 16	Remainder
47	$15_{10} = F_{16}$
2	$2_{10} = 2_{16}$

↑
LSB MSB

Binary to Hexadecimal conversion

110011100010000₂

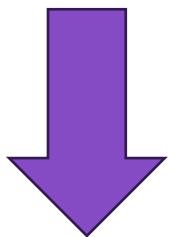

What is the following binary number in hexadecimal?

4 bits is equal to one hex digit

Hexadecimal digit	Binary equivalent	Decimal equivalent
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
A	1010	10
B	1011	11
C	1100	12
D	1101	13
E	1110	14
F	1111	15

Binary to Hexadecimal conversion

110011100010000₂


break into 4 bit groups

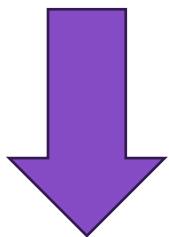
0110 0111 0001 0000₂

Hexadecimal digit	Binary equivalent
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
A	1010
B	1011
C	1100
D	1101
E	1110
F	1111

Binary to Hexadecimal conversion

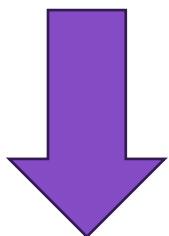
110011100010000_2

$0110\ 0111\ 0001\ 0000_2$


break into 4 bit groups

convert each 4 bit group into a digit

Hexadecimal digit	Binary equivalent
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
A	1010
B	1011
C	1100
D	1101
E	1110
F	1111


Binary to Hexadecimal conversion

110011100010000_2

break into 4 bit groups

$0110\ 0111\ 0001\ 0000_2$

convert each 4 bit group into a digit

$6\ 7\ 1\ 0_{16}$

Hexadecimal digit	Binary equivalent
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
A	1010
B	1011
C	1100
D	1101
E	1110
F	1111

PRACTICE TIME

- Convert the following binary numbers to their hexadecimal representation.
 - 10010011_2
 - 101100110101_2
 - 11011_2
 - 11111011101110010_2

Hexadecimal digit	Binary equivalent
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
A	1010
B	1011
C	1100
D	1101
E	1110
F	1111

ANSWER

- Convert the following binary numbers to their hexadecimal representation.
 - $1001\ 0011_2 = 93_{16}$
 - $1011\ 0011\ 0101_2 = B35_{16}$
 - $11011_2 = 0001\ 1011 = 1B_{16}$
 - $1111011101110010_2 = 0001\ 1111\ 0111\ 0111\ 0010 = 1F772_{16}$

Hexadecimal digit	Binary equivalent
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
A	1010
B	1011
C	1100
D	1101
E	1110
F	1111

Hexadecimal to binary conversion

- We replace each hex digit with the four binary bits that correspond to its value.
- Example: Convert the hexadecimal number $CAFE_{16}$ to its binary representation.
 - $C_{16} = 1100_2$
 - $A_{16} = 1010_2$
 - $F_{16} = 1111_2$
 - $E_{16} = 1110_2$
 - Putting this all together, $CAFE_{16} = 110010101111110_2$.

Hexadecimal digit	Binary equivalent
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
A	1010
B	1011
C	1100
D	1101
E	1110
F	1111

PRACTICE TIME

- Convert the following hexadecimal numbers to their binary representation.
 - $F00D_{16}$
 - $2B3BAD_{16}$
 - $DEADC0DE_{16}$

Hexadecimal digit	Binary equivalent
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
A	1010
B	1011
C	1100
D	1101
E	1110
F	1111

ANSWER

- Convert the following hexadecimal numbers to their binary representation.
 - $F00D_{16} = 1111000000001101_2$
 - $2B3BAD_{16} = 00101011001110110101101_2$
 - $DEADC0DE_{16} = 11011110101011011100000011011110_2$

Hexadecimal digit	Binary equivalent
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
A	1010
B	1011
C	1100
D	1101
E	1110
F	1111

Practice Problem

- For each row, fill in the missing entries by converting the given number from its representation to every other equivalent representation.

Binary	Decimal	Hexadecimal
	39_{10}	
100111010_2		
		$BAD{E}_{16}$
	47_{10}	
101100111_2		
		$C0FFEE_{16}$

Practice Problem - ANSWER

- For each row, fill in the missing entries by converting the given number from its representation to every other equivalent representation.

Binary	Decimal	Hexadecimal
100111_2	39_{10}	27_{16}
100111010_2	314_{10}	$13A_{16}$
1011101011011110_2	47838_{10}	$BADE_{16}$
101111_2	47_{10}	$2F_{16}$
101100111_2	359_{10}	167_{16}
1100000011111111101110_2	12648430_{10}	$C0FFEE_{16}$