

Boolean Algebra

CS51 – Spring 2026

Admin

How is Assignment 1 going?

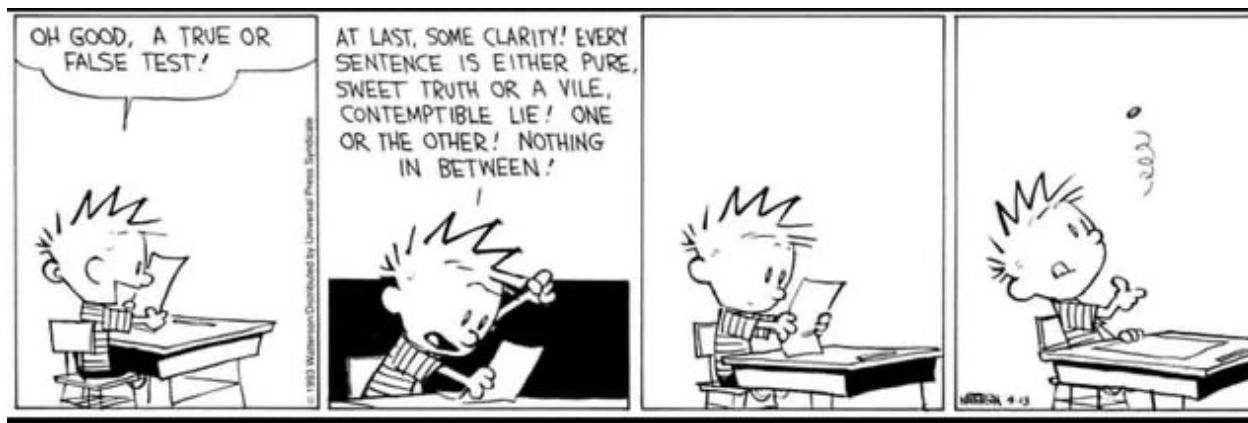
Booleans

What is a Boolean (e.g., a Boolean variable)?

Booleans

What is a Boolean (e.g., Boolean variable)?

A variable/value that only has two possible values True/1 or False/0



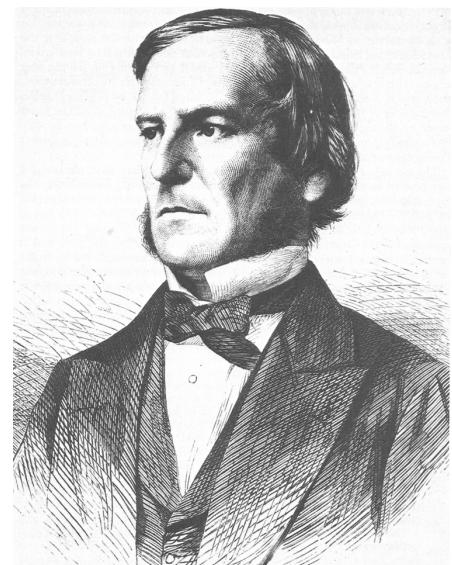
Why are they called Booleans?

Why are they called Booleans?

George Boole was a self-taught English mathematician (1815-1864)

He introduced **binary variables** and **binary logic**

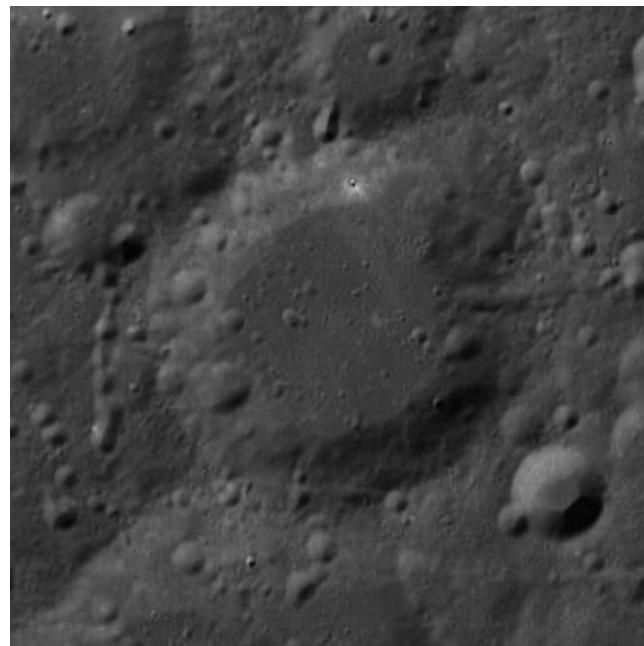
which laid the foundation for **Boolean algebra** (which looks at how you can combine Boolean variables)



George Boole

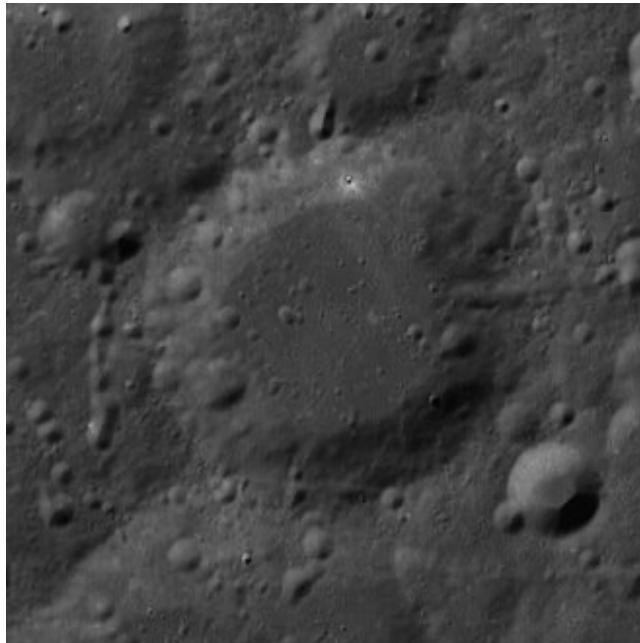
An aside

Anyone know what this is?



An aside

Anyone know what this is?

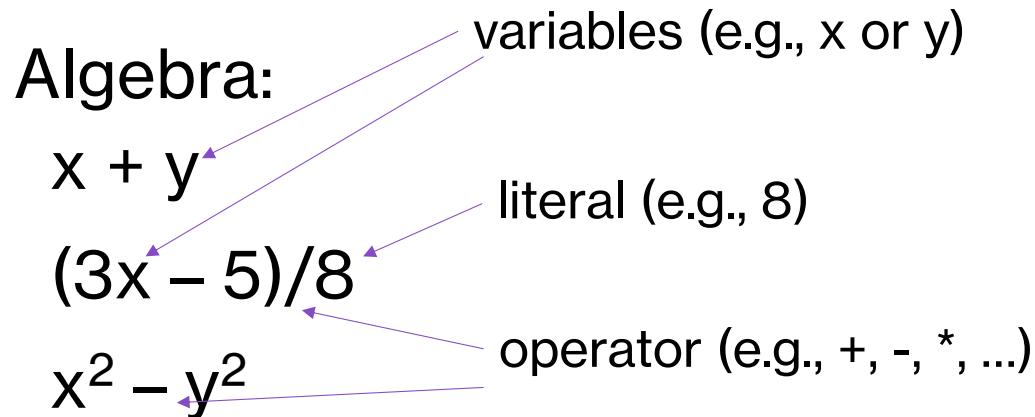


Boole crater

[https://en.wikipedia.org/wiki/Boole_\(crater\)](https://en.wikipedia.org/wiki/Boole_(crater))

Boolean algebra

Boolean algebra is a branch of algebra where variables can only have two values



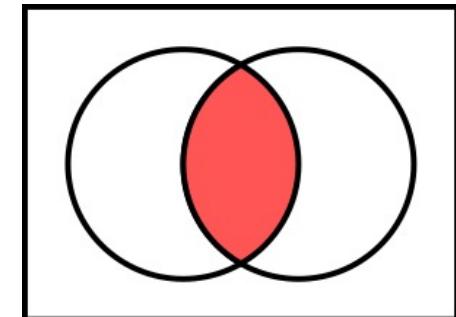
Boolean algebra

Boolean algebra is a branch of algebra where variables can only have two values

Literals: True, False (alternatively: 1, 0)

Operators?

AND operation – Conjunction



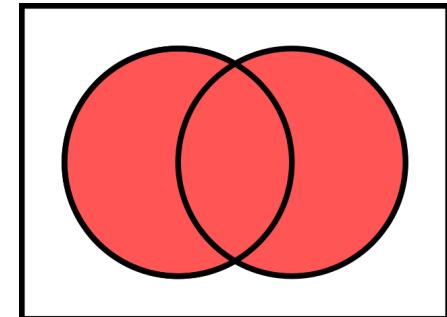
X	Y	X AND Y
FALSE	FALSE	FALSE
FALSE	TRUE	FALSE
TRUE	FALSE	FALSE
TRUE	TRUE	TRUE

X	Y	X \wedge Y
0	0	0
0	1	0
1	0	0
1	1	1

Only TRUE if both (or all) values are TRUE

Example: I'm going to hang out if I finish my homework **AND** it doesn't get too late.

OR operation – Disjunction

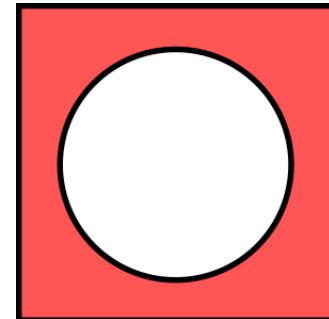


X	Y	X OR Y
FALSE	FALSE	FALSE
FALSE	TRUE	TRUE
TRUE	FALSE	TRUE
TRUE	TRUE	TRUE

X	Y	X v Y
0	0	0
0	1	1
1	0	1
1	1	1

TRUE at least one value is TRUE

NOT operation – Negation



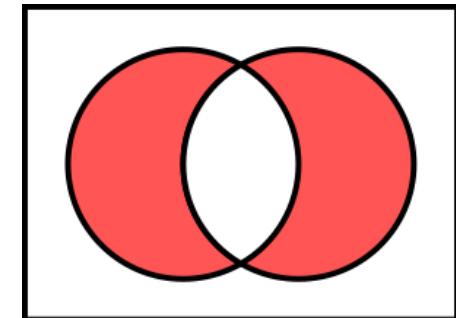
X	NOT X
FALSE	TRUE
TRUE	FALSE

X	$\neg X$
0	1
1	0

Negates or flips the value

Example: I'm going to hate CS51. NOT.

XOR operation – Exclusive OR



X	Y	X XOR Y
FALSE	FALSE	FALSE
FALSE	TRUE	TRUE
TRUE	FALSE	TRUE
TRUE	TRUE	FALSE

X	Y	$X \oplus Y$
0	0	0
0	1	1
1	0	1
1	1	0

TRUE if *exactly one* value is TRUE

PRACTICE TIME – Evaluate these expressions

- $0 \vee \neg 0$
- $1 \wedge \neg 1$
- $\neg(1 \wedge 0)$
- $0 \wedge \neg 1$
- $\neg(1 \vee \neg 1)$

AND

X	Y	$X \wedge Y$
0	0	0
0	1	0
1	0	0
1	1	1

NOT

X	$\neg X$
0	1
1	0

OR

X	Y	$X \vee Y$
0	0	0
0	1	1
1	0	1
1	1	1

XOR

X	Y	$X \oplus Y$
0	0	0
0	1	1
1	0	1
1	1	0

ANSWER- Evaluate these expressions

- $0 \vee \neg 0 = 0 \vee 1 = 1$
- $1 \wedge \neg 1 = 1 \wedge 0 = 0$
- $\neg (1 \wedge 0) = \neg 0 = 1$
- $0 \wedge \neg 1 = 0 \wedge 0 = 0$
- $\neg (1 \vee \neg 1) = \neg (1 \vee 0) = \neg 1 = 0$
- $1 \oplus \neg 1 = 1 \oplus 0 = 1$
- $(1 \wedge (1 \oplus \neg(0 \vee \neg 1))) =$
 $(1 \wedge (1 \oplus \neg(0 \vee 0))) =$
 $(1 \wedge (1 \oplus \neg 1)) =$
 $(1 \wedge (1 \oplus 0)) = 1 \wedge 1 = 1$

Boolean functions of three+ variables

We can have Boolean functions with any number of variables:

For example, AND and OR generalize as expected:

X	Y	Z	AND(X,Y,Z)	OR(X,Y,Z)
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Operator precedence

$$2 + 3 * 5 =$$

$$(2 + 3) * 5 =$$

Operator precedence

$$2 + 3 * 5 = 17$$

$$(2 + 3) * 5 = 25$$

Boolean operator precedence

$1 \vee 1 \wedge 0 =$

$\neg 0 \wedge 0 =$

Boolean operator precedence

Most common convention:

$$1 \vee 1 \wedge 0 = 1$$

highest precedence (happens first)

¬

Λ

∨

$$\neg 0 \wedge 0 = 0$$

lowest precedence (happens later)

Boolean operator precedence: use parens

Most common convention:

$$(1 \vee 1) \wedge 0 = 0 \quad \text{highest precedence (happens first)}$$

()

¬

$$\neg(0 \wedge 0) = 1 \quad \wedge$$

∨

lowest precedence (happens later)

Programming lang

Distributive law

$$x (y + z) =$$

Distributive law

$$x(y + z) = xy + zy$$

Distributive law in Boolean algebra

$$x \wedge (y \vee z) =$$

Distributive law in Boolean algebra

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

How would you check this?

Distributive law in Boolean algebra

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

x	y	z	$y \vee z$	$x \wedge (y \vee z)$	$(x \wedge y)$	$(x \wedge z)$	$(x \wedge y) \vee (x \wedge z)$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

PRACTICE TIME – De Morgan's laws

- $\neg (X \wedge Y) =$
- $\neg (X \vee Y) =$

X	Y	$X \wedge Y$	$\neg (X \wedge Y)$	$X \vee Y$	$\neg (X \vee Y)$	$\neg X$	$\neg Y$	$\neg X \wedge \neg Y$	$\neg X \vee \neg Y$
0	0								
0	1								
1	0								
1	1								

ANSWER – De Morgan's laws

- $\neg(X \wedge Y) = \neg X \vee \neg Y$
- $\neg(X \vee Y) = \neg X \wedge \neg Y$

X	Y	$X \wedge Y$	$\neg(X \wedge Y)$	$X \vee Y$	$\neg(X \vee Y)$	$\neg X$	$\neg Y$	$\neg X \wedge \neg Y$	$\neg X \vee \neg Y$
0	0	0	1	0	1	1	1	1	1
0	1	0	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	0	1
1	1	1	0	1	0	0	0	0	0

A mathematical lineage to the first computer

Augustus De Morgan

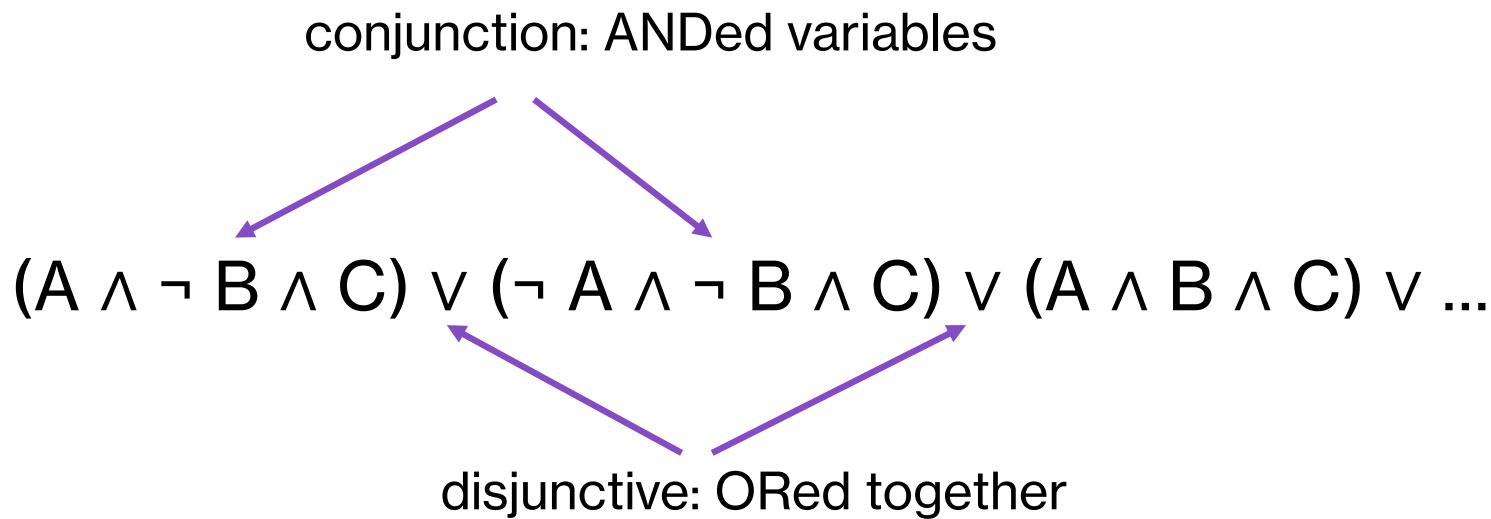
Ada Lovelace

Charles Babbage

Disjunctive normal form (DNF)

Theorem (Boole, 1847):

Any Boolean function can be represented as a disjunction (i.e., OR) of conjunctions (i.e., ANDs) of its arguments and their negation (NOT). This is also known as **disjunctive normal form** (DNF) or a sum of products/minterms.



Disjunctive normal form (DNF)

One way this can happen is by using “laws”, specifically:

$(\neg\neg x)$	\rightsquigarrow	x	double negation
$(\neg(x \vee y))$	\rightsquigarrow	$((\neg x) \wedge (\neg y))$	De Morgan's laws
$(\neg(x \wedge y))$	\rightsquigarrow	$((\neg x) \vee (\neg y))$	
$(x \wedge (y \vee z))$	\rightsquigarrow	$((x \wedge y) \vee (x \wedge z))$	distributive law
$((x \vee y) \wedge z)$	\rightsquigarrow	$((x \wedge z) \vee (y \wedge z))$	

Minterms

Another way this can happen is directly from the truth table

Row number	X	Y	Z	Minterm
0	0	0	0	$m_0 = \neg X \wedge \neg Y \wedge \neg Z$
1	0	0	1	$m_1 = \neg X \wedge \neg Y \wedge Z$
2	0	1	0	$m_2 = \neg X \wedge Y \wedge \neg Z$
3	0	1	1	$m_3 = \neg X \wedge Y \wedge Z$
4	1	0	0	$m_4 = X \wedge \neg Y \wedge \neg Z$
5	1	0	1	$m_5 = X \wedge \neg Y \wedge Z$
6	1	1	0	$m_6 = X \wedge Y \wedge \neg Z$
7	1	1	1	$m_7 = X \wedge Y \wedge Z$

Minterm: a Boolean expression consisting of the conjunction (AND) of all variables of a Boolean function

Minterms

Note that a minterm will be TRUE/1 for **exactly one entry** in the truth table

Row number	X	Y	Z	$m_3 = \neg X \wedge Y \wedge Z$
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	0
6	1	1	0	0
7	1	1	1	0

Minterm: a Boolean expression consisting of the conjunction (AND) of all variables of a Boolean function

An example: majority function

MAJ: A majority of the variables are TRUE (1)

X	Y	Z	MAJ(X,Y,Z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Minterms -> DNF

Key idea: identify and combine entries that are 1

X	Y	Z	MAJ(X,Y,Z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Minterms -> DNF

Key idea: identify and combine entries that are 1

X	Y	Z	MAJ(X,Y,Z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

OR these together

If any one of these is the entry, then we are 1

DNF of MAJ function

X	Y	Z	MAJ(X,Y,Z)	Minterm
0	0	0	0	$m_0 = \neg X \wedge \neg Y \wedge \neg Z$
0	0	1	0	$m_1 = \neg X \wedge \neg Y \wedge Z$
0	1	0	0	$m_2 = \neg X \wedge Y \wedge \neg Z$
0	1	1	1	$m_3 = \neg X \wedge Y \wedge Z$
1	0	0	0	$m_4 = X \wedge \neg Y \wedge \neg Z$
1	0	1	1	$m_5 = X \wedge \neg Y \wedge Z$
1	1	0	1	$m_6 = X \wedge Y \wedge \neg Z$
1	1	1	1	$m_7 = X \wedge Y \wedge Z$

$$\text{MAJ}(X, Y, Z) = (\neg X \wedge Y \wedge Z) \vee (X \wedge \neg Y \wedge Z) \vee (X \wedge Y \wedge \neg Z) \vee (X \wedge Y \wedge Z)$$

PRACTICE TIME - ODD function using DNF

$\text{ODD}(X_1, X_2, \dots, X_n) = 1$ if an odd number of arguments is 1, 0 otherwise

X	Y	Z	ODD(X,Y,Z)	Minterm
0	0	0	0	$m_0 =$
0	0	1	1	$m_1 =$
0	1	0	1	$m_2 =$
0	1	1	0	$m_3 =$
1	0	0	1	$m_4 =$
1	0	1	0	$m_5 =$
1	1	0	0	$m_6 =$
1	1	1	1	$m_7 =$

$\text{ODD}(X, Y, Z) =$

PRACTICE TIME - ODD function using DNF

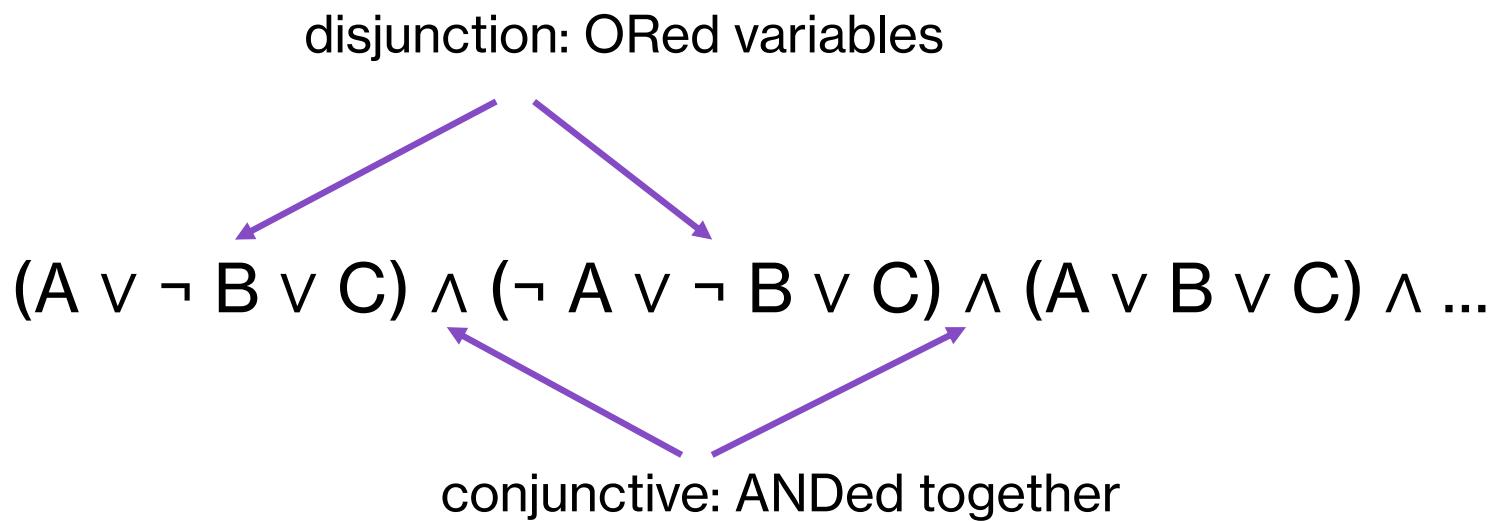
$\text{ODD}(X_1, X_2, \dots, X_n) = 1$ if an odd number of arguments is 1, 0 otherwise

X	Y	Z	ODD(X,Y,Z)	Minterm
0	0	0	0	$m_0 =$
0	0	1	1	$m_1 = \neg X \wedge \neg Y \wedge Z$
0	1	0	1	$m_2 = \neg X \wedge Y \wedge \neg Z$
0	1	1	0	$m_3 =$
1	0	0	1	$m_4 = X \wedge \neg Y \wedge \neg Z$
1	0	1	0	$m_5 =$
1	1	0	0	$m_6 =$
1	1	1	1	$m_7 = X \wedge Y \wedge Z$

$$\text{ODD}(X, Y, Z) = (\neg X \wedge \neg Y \wedge Z) \vee (\neg X \wedge Y \wedge \neg Z) \vee (X \wedge \neg Y \wedge \neg Z) \vee (X \wedge Y \wedge Z)$$

Conjunctive normal form (CNF)

Any Boolean function can be represented as a conjunction (i.e., AND) of disjunctions (i.e., ORs) of its arguments and their negation (NOT). This is also known as **conjunctive normal form** (CNF) or a product of sums/maxterms.



Maxterms

Maxterm: a disjunction (OR) of all variables of a Boolean function

Row number	X	Y	Z	Maxterm
0	0	0	0	$M_0 = X \vee Y \vee Z$
1	0	0	1	$M_1 = X \vee Y \vee \neg Z$
2	0	1	0	$M_2 = X \vee \neg Y \vee Z$
3	0	1	1	$M_3 = X \vee \neg Y \vee \neg Z$
4	1	0	0	$M_4 = \neg X \vee Y \vee Z$
5	1	0	1	$M_5 = \neg X \vee Y \vee \neg Z$
6	1	1	0	$M_6 = \neg X \vee \neg Y \vee Z$
7	1	1	1	$M_7 = \neg X \vee \neg Y \vee \neg Z$

The maxterm is formed by ORing together the “opposite” of the value in the truth table

Maxterms

Note that a maxterm will be TRUE/1 for **all entries except one** in the truth table

Row number	X	Y	Z	$M_5 = \neg X \vee Y \vee \neg Z$
0	0	0	0	1
1	0	0	1	1
2	0	1	0	1
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

Maxterms -> CNF

Key idea: identify and combine entries that are 0, i.e., as long as it's not one of these entries, it's 1

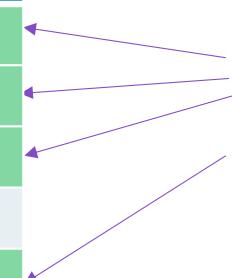
X	Y	Z	MAJ(X,Y,Z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Maxterms -> CNF

Key idea: identify and combine entries that are 0, i.e.,
as long as it's not one of these entries, it's 1

X	Y	Z	MAJ(X,Y,Z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

AND these together



CNF of MAJ function

X	Y	Z	MAJ(X,Y,Z)	Maxterm
0	0	0	0	$M_0 = X \vee Y \vee Z$
0	0	1	0	$M_1 = X \vee Y \vee \neg Z$
0	1	0	0	$M_2 = X \vee \neg Y \vee Z$
0	1	1	1	$M_3 = X \vee \neg Y \vee \neg Z$
1	0	0	0	$M_4 = \neg X \vee Y \vee Z$
1	0	1	1	$M_5 = \neg X \vee Y \vee \neg Z$
1	1	0	1	$M_6 = \neg X \vee \neg Y \vee Z$
1	1	1	1	$M_7 = \neg X \vee \neg Y \vee \neg Z$

$$\text{MAJ}(X, Y, Z) = (X \vee Y \vee Z) \wedge (X \vee Y \vee \neg Z) \wedge (X \vee \neg Y \vee Z) \wedge (\neg X \vee Y \vee Z)$$

MAJ(0, 1, 1) = ?

X	Y	Z	MAJ(X,Y,Z)	Maxterm
0	0	0	0	$M_0 = X \vee Y \vee Z$
0	0	1	0	$M_1 = X \vee Y \vee \neg Z$
0	1	0	0	$M_2 = X \vee \neg Y \vee Z$
0	1	1	1	$M_3 = X \vee \neg Y \vee \neg Z$
1	0	0	0	$M_4 = \neg X \vee Y \vee Z$
1	0	1	1	$M_5 = \neg X \vee Y \vee \neg Z$
1	1	0	1	$M_6 = \neg X \vee \neg Y \vee Z$
1	1	1	1	$M_7 = \neg X \vee \neg Y \vee \neg Z$

$$\text{MAJ}(X, Y, Z) = (X \vee Y \vee Z) \wedge (X \vee Y \vee \neg Z) \wedge (X \vee \neg Y \vee Z) \wedge (\neg X \vee Y \vee Z)$$

MAJ(0, 1, 1) = ?

X	Y	Z	MAJ(X,Y,Z)	Maxterm
0	0	0	0	$M_0 = X \vee Y \vee Z$
0	0	1	0	$M_1 = X \vee Y \vee \neg Z$
0	1	0	0	$M_2 = X \vee \neg Y \vee Z$
0	1	1	1	$M_3 = X \vee \neg Y \vee \neg Z$
1	0	0	0	$M_4 = \neg X \vee Y \vee Z$
1	0	1	1	$M_5 = \neg X \vee Y \vee \neg Z$
1	1	0	1	$M_6 = \neg X \vee \neg Y \vee Z$
1	1	1	1	$M_7 = \neg X \vee \neg Y \vee \neg Z$

1

1

1

1

$$\text{MAJ}(X, Y, Z) = (X \vee \textcolor{blue}{Y} \vee \textcolor{blue}{Z}) \wedge (X \vee \textcolor{blue}{Y} \vee \neg Z) \wedge (X \vee \neg Y \vee \textcolor{blue}{Z}) \wedge (\neg \textcolor{blue}{X} \vee \textcolor{blue}{Y} \vee \textcolor{blue}{Z})$$

MAJ(1, 0, 0) = ?

X	Y	Z	MAJ(X,Y,Z)	Maxterms
0	0	0	0	$M_0 = X \vee Y \vee Z$
0	0	1	0	$M_1 = X \vee Y \vee \neg Z$
0	1	0	0	$M_2 = X \vee \neg Y \vee Z$
0	1	1	1	$M_3 = X \vee \neg Y \vee \neg Z$
1	0	0	0	$M_4 = \neg X \vee Y \vee Z$
1	0	1	1	$M_5 = \neg X \vee Y \vee \neg Z$
1	1	0	1	$M_6 = \neg X \vee \neg Y \vee Z$
1	1	1	1	$M_7 = \neg X \vee \neg Y \vee \neg Z$

$$\text{MAJ}(X, Y, Z) = (X \vee Y \vee Z) \wedge (X \vee Y \vee \neg Z) \wedge (X \vee \neg Y \vee Z) \wedge (\neg X \vee Y \vee Z)$$

MAJ(1, 0, 0) = ?

X	Y	Z	MAJ(X,Y,Z)	Maxterms
0	0	0	0	$M_0 = X \vee Y \vee Z$
0	0	1	0	$M_1 = X \vee Y \vee \neg Z$
0	1	0	0	$M_2 = X \vee \neg Y \vee Z$
0	1	1	1	$M_3 = X \vee \neg Y \vee \neg Z$
1	0	0	0	$M_4 = \neg X \vee Y \vee Z$
1	0	1	1	$M_5 = \neg X \vee Y \vee \neg Z$
1	1	0	1	$M_6 = \neg X \vee \neg Y \vee Z$
1	1	1	1	$M_7 = \neg X \vee \neg Y \vee \neg Z$

1

1

1

0

$$\text{MAJ}(X, Y, Z) = (\textcolor{blue}{X} \vee Y \vee Z) \wedge (\textcolor{blue}{X} \vee Y \vee \neg Z) \wedge (\textcolor{blue}{X} \vee \neg Y \vee Z) \wedge (\neg X \vee Y \vee Z)$$

PRACTICE TIME - ODD function using CNF

$\text{ODD}(X_1, X_2, \dots, X_n) = 1$ if an odd number of arguments is 1, 0 otherwise

X	Y	Z	ODD(X,Y,Z)	Maxterms
0	0	0	0	$M_0 =$
0	0	1	1	$M_1 =$
0	1	0	1	$M_2 =$
0	1	1	0	$M_3 =$
1	0	0	1	$M_4 =$
1	0	1	0	$M_5 =$
1	1	0	0	$M_6 =$
1	1	1	1	$M_7 =$

$\text{ODD}(X, Y, Z) =$

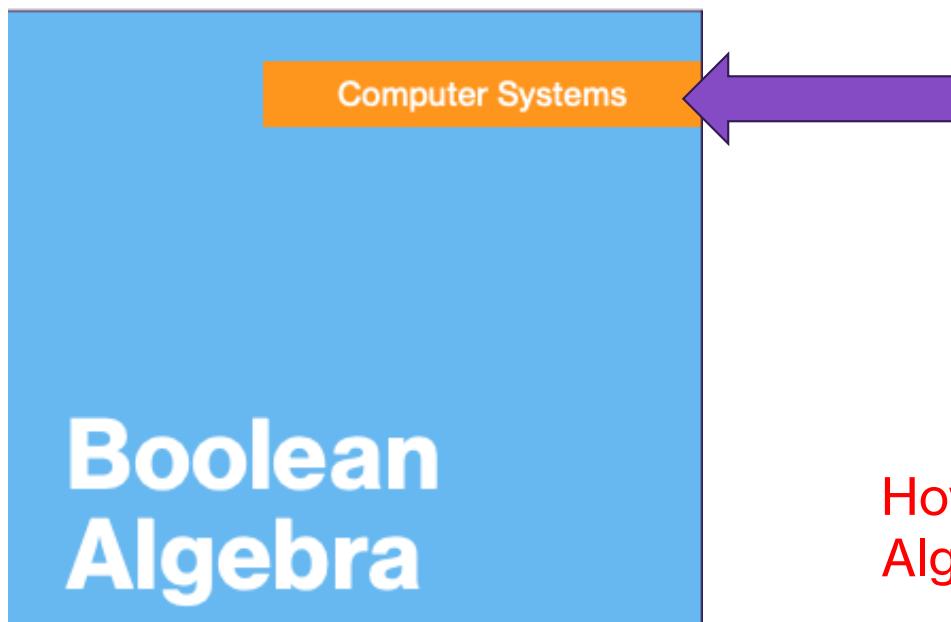
PRACTICE TIME - ODD function using CNF

$\text{ODD}(X_1, X_2, \dots, X_n) = 1$ if an odd number of arguments is 1, 0 otherwise

X	Y	Z	ODD(X,Y,Z)	Maxterms
0	0	0	0	$M_0 = X \vee Y \vee Z$
0	0	1	1	$M_1 =$
0	1	0	1	$M_2 =$
0	1	1	0	$M_3 = X \vee \neg Y \vee \neg Z$
1	0	0	1	$M_4 =$
1	0	1	0	$M_5 = \neg X \vee Y \vee \neg Z$
1	1	0	0	$M_6 = \neg X \vee \neg Y \vee Z$
1	1	1	1	$M_7 =$

$$\text{ODD}(X, Y, Z) = (X \vee Y \vee Z) \wedge (X \vee Y \vee \neg Z) \wedge (X \vee \neg Y \vee Z) \wedge (\neg X \vee Y \vee Z)$$

Circling back...



This was the first
lecture for our
“Computer Systems”
section

How does Boolean
Algebra fit in?

CPU

CPU: central processing unit

CPU

Inside a CPU

Gates

Inside a CPU

Gates

NOT

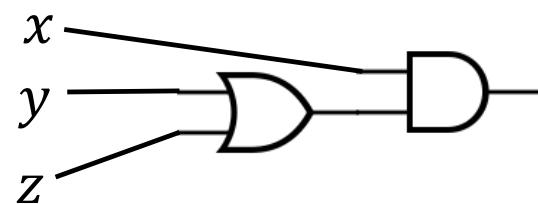
AND

OR

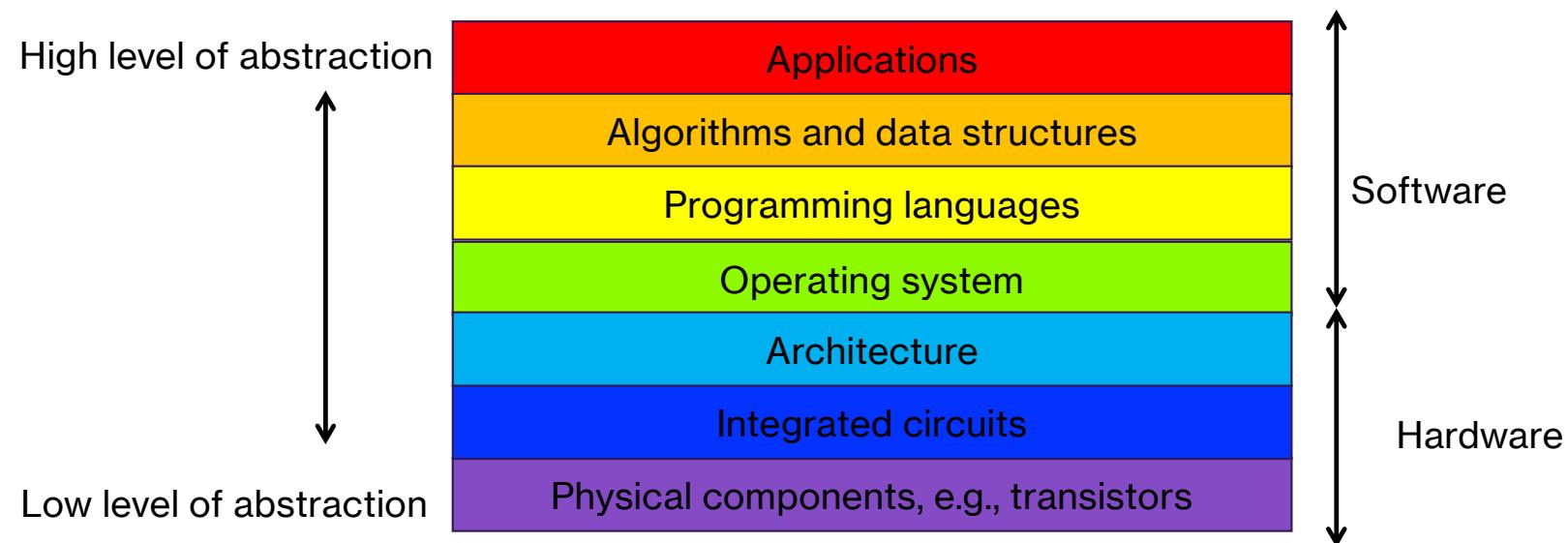
XOR

Gates

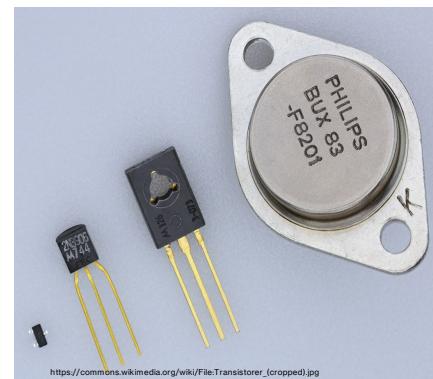
$$x \wedge (y \vee z) =$$



Abstraction

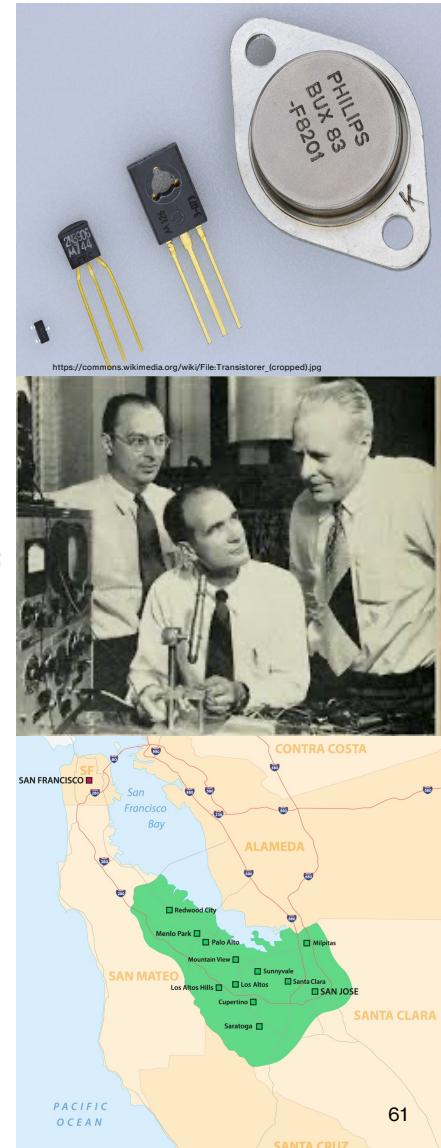


Transistors



Transistors

- Transistors are semiconductor devices made out of silicon.
- They act as switches that can be open or closed by applying electricity.
- Integrated circuits in modern computers are built off billions of transistors.
 - They are **small** – you can fit a few thousand of them across the width of a human hair!
 - They are **fast** – they can switch states millions of times per second.
 - They are **reliable** – they can run without any issue for decades.
- Invented in 1947 by Bardeen, Brattain, and Shockley at Bell Lab.
 - They shared the 1956 Nobel Prize in Physics for their achievement.
- A lot of development of transistors and circuits took place in Santa Clara Valley, which by the 1980s started being referred to as the **Silicon Valley**.



Simplifying Boolean formulas

DNF

$$\text{MAJ}(X, Y, Z) = (\neg X \wedge Y \wedge Z) \vee (X \wedge \neg Y \wedge Z) \vee (X \wedge Y \wedge \neg Z) \vee (X \wedge Y \wedge Z)$$

CNF

$$\text{MAJ}(X, Y, Z) = (X \vee Y \vee Z) \wedge (X \vee Y \vee \neg Z) \wedge (X \vee \neg Y \vee Z) \wedge (\neg X \vee Y \vee Z)$$

Both of these are pretty long. Can we come up with a simpler (shorter) representation?

Simplifying Boolean formulas

DNF

$$\text{MAJ}(X, Y, Z) = (\neg X \wedge Y \wedge Z) \vee (X \wedge \neg Y \wedge Z) \vee (X \wedge Y \wedge \neg Z) \vee (X \wedge Y \wedge Z)$$

CNF

$$\text{MAJ}(X, Y, Z) = (X \vee Y \vee Z) \wedge (X \vee Y \vee \neg Z) \wedge (X \vee \neg Y \vee Z) \wedge (\neg X \vee Y \vee Z)$$

For example:

$$\text{MAJ}(X, Y, Z) = (X \wedge Y) \vee (Y \wedge Z) \vee (Z \wedge X)$$

Karnaugh Maps (aka, K-maps)

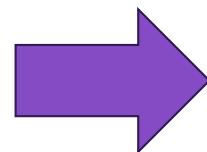
Another approach for creating a Boolean function from a truth table

X	Y	F
0	0	1
0	1	0
1	0	1
1	1	0

Karnaugh Maps (aka, K-maps)

Another approach for creating a Boolean function from a truth table

X	Y	F
0	0	1
0	1	0
1	0	1
1	1	0



X

Y

	0	1
0	1	1
1	0	0

Gray Code

Karnaugh Maps (aka, K-maps)

		x	
		0	1
y	0	1	1
	1	0	0

Create groups of 1s:

- Only contain 1s
- Must be a square or rectangle
- Area must be a power of 2
- Groups should be as large as possible
- Groups can overlap
- Groups can wrap around
- All 1s must be covered

Karnaugh Maps (aka, K-maps)

		x	
		0	1
y	0	1	1
	1	0	0

Create groups of 1s:

- Only contain 1s
- Must be a square or rectangle
- Area must be a power of 2
- Groups should be as large as possible
- Groups can overlap
- Groups can wrap around
- All 1s must be covered

Karnaugh Maps (aka, K-maps)

		x	
		0	1
y	0	1	0
	1	0	1

Create groups of 1s:

- Only contain 1s
- Must be a square or rectangle
- Area must be a power of 2
- Groups should be as large as possible
- Groups can overlap
- Groups can wrap around
- All 1s must be covered

Karnaugh Maps (aka, K-maps)

		x	
		0	1
y	0	1	0
	1	0	1

Create groups of 1s:

- Only contain 1s
- Must be a square or rectangle
- Area must be a power of 2
- Groups should be as large as possible
- Groups can overlap
- Groups can wrap around
- All 1s must be covered

Karnaugh Maps (aka, K-maps)

		x	
		0	1
y	0	1	0
	1	1	1

Create groups of 1s:

- Only contain 1s
- Must be a square or rectangle
- Area must be a power of 2
- Groups should be as large as possible
- Groups can overlap
- Groups can wrap around
- All 1s must be covered

Karnaugh Maps (aka, K-maps)

		x	
		0	1
y	0	1	0
	1	1	1

Create groups of 1s:

- Only contain 1s
- Must be a square or rectangle
- Area must be a power of 2
- Groups should be as large as possible
- Groups can overlap
- Groups can wrap around
- All 1s must be covered

Karnaugh Maps (aka, K-maps)

		X
		0 1
Y	0	1 1
	1	0 0

Each group becomes a conjunction:

- Look for the variable(s) that don't change:
 - If it stays a 1, you add the variable as is
 - If it stays a 0, you add the negation of the variable
- OR the conjunctions together

What does this become?

Karnaugh Maps (aka, K-maps)

		x
		0 1
y	0	1 1
	1	0 0

$\neg Y$

Each group becomes a conjunction:

- Look for the variable(s) that don't change:
 - If it stays a 1, you add the variable as is
 - If it stays a 0, you add the negation of the variable
- OR the conjunctions together

Karnaugh Maps (aka, K-maps)

		X
		0 1
Y	0	1 1
	1	0 0

X	Y	F
0	0	1
0	1	0
1	0	1
1	1	0

$\neg Y$

Karnaugh Maps (aka, K-maps)

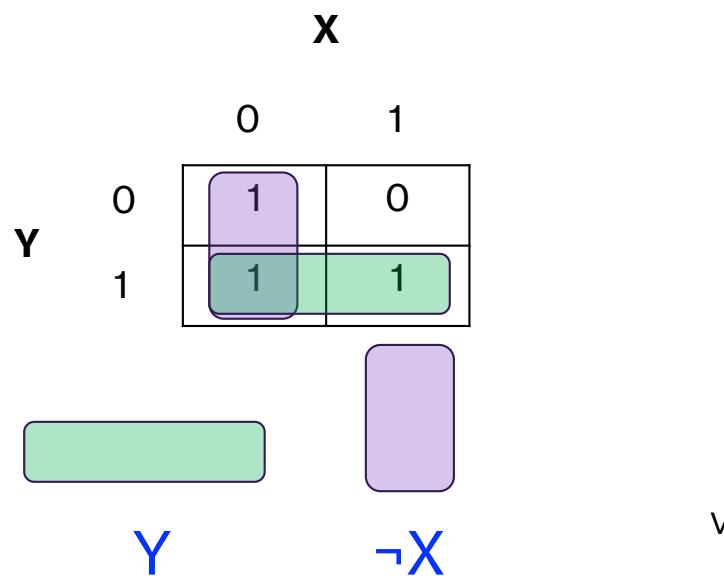
		x	
		0	1
y	0	1	0
	1	1	1

Each group becomes a conjunction:

- Look for the variable(s) that don't change:
 - If it stays a 1, you add the variable as is
 - If it stays a 0, you add the negation of the variable
- OR the conjunctions together

What does this become?

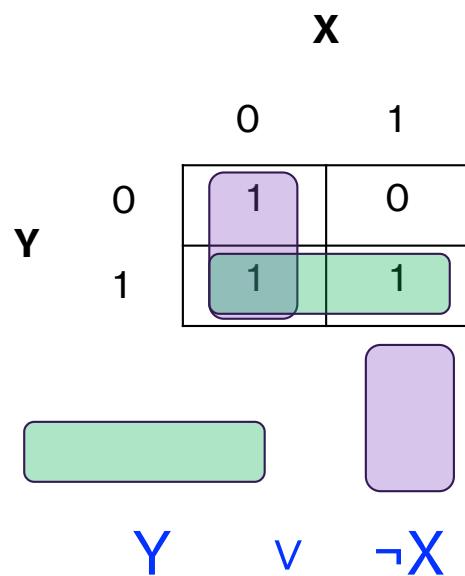
Karnaugh Maps (aka, K-maps)



Each group becomes a conjunction:

- Look for the variable(s) that don't change:
 - If it stays a 1, you add the variable as is
 - If it stays a 0, you add the negation of the variable
- OR the conjunctions together

Karnaugh Maps (aka, K-maps)



Each group becomes a conjunction:

- Look for the variable(s) that don't change:
 - If it stays a 1, you add the variable as is
 - If it stays a 0, you add the negation of the variable
- **OR the conjunctions together**

Practice Problems – Problem 1

- You are given the following truth table for a Boolean function with three variables, A, B, and C, and an output column F.
- What are the disjunctive and conjunctive normal forms based on this truth table?

A	B	C	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Practice Problems – Problem 2

Assuming $x = 6$, $y = 2$, $z = 12$. What would the following Python expressions evaluate to?

- $x == 10$ or $x < 5$
- $x != 7$ and $x > 3$
- $\text{not } (x >= 5 \text{ and } y <= 2)$
- $(x < 0) \text{ or } (x >= 0)$
- $\text{not } (x != x)$
- $x > 1$ and $(z / x) != 2$
- $x <= 0$ or $(z / x) == 1$
- $x == 4$ and $y == 4$

Practice Problems – Answer 1

- Disjunctive normal form:

$$F = (\neg A \wedge \neg B \wedge \neg C) \vee (\neg A \wedge B \wedge \neg C) \vee (A \wedge \neg B \wedge C) \vee (A \wedge B \wedge \neg C)$$

- Conjunctive normal form:

$$F = (A \vee B \vee \neg C) \wedge (A \vee \neg B \vee \neg C) \wedge (\neg A \vee B \vee C) \wedge (\neg A \vee \neg B \vee \neg C)$$

A	B	C	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Practice Problems – Answer 2

Assuming $x = 6$, $y = 2$, $z = 12$. What would the following Python expressions evaluate to?

- $x == 10$ or $x < 5 \rightarrow 6 == 10$ or $6 < 5 \rightarrow \text{False or False} \rightarrow \text{False}$
- $x != 7$ and $x > 3 \rightarrow 6 != 7$ and $6 > 3 \rightarrow \text{True and True} \rightarrow \text{True}$
- $\text{not } (x >= 5 \text{ and } y <= 2) \rightarrow \text{not } (6 >= 5 \text{ and } 2 <= 2) \rightarrow \text{not } (\text{True and True}) \rightarrow \text{not True} \rightarrow \text{False}$
- $(x < 0) \text{ or } (x >= 0) \rightarrow 6 < 0 \text{ or } 6 >= 0 \rightarrow \text{False or True} \rightarrow \text{True}$ (always true, no matter what x is)
- $\text{not } (x != x) \rightarrow \text{not False} \rightarrow \text{True}$
- $x > 1$ and $(z / x) != 2 \rightarrow 6 > 1$ and $(12 / 6 != 2) \rightarrow \text{True and False} \rightarrow \text{False}$
- $x <= 0$ or $(z / x) == 1 \rightarrow 6 <= 0$ or $(12 / 6 == 1) \rightarrow \text{False or False} \rightarrow \text{False}$
- $x == 4$ and $y == 4 \rightarrow 6 == 4$ and $2 == 4 \rightarrow \text{False and False} \rightarrow \text{False}$