
Boolean
Algebra
CS51 – Spring 2026

NOT AND

XOROR

Computer Systems

Admin

How is Assignment 1 going?

2

Booleans

What is a Boolean (e.g., a Boolean variable)?

3

Booleans

What is a Boolean (e.g., Boolean variable)?

4

A variable/value that only has two possible values True/1 or False/0

Why are they called Booleans?

5

Why are they called Booleans?

George Boole was a self-taught English
mathematician (1815-1864)

He introduced binary variables and binary logic

which laid the foundation for Boolean algebra (which
looks at how you can combine Boolean variables)

6

George Boole

An aside

Anyone know what this is?

7

An aside

Anyone know what this is?

8

Boole crater
https://en.wikipedia.org/wiki/Boole_(crater)

https://en.wikipedia.org/wiki/Boole_(crater)
https://en.wikipedia.org/wiki/Boole_(crater)

Boolean algebra

Boolean algebra is a branch of algebra where variables
can only have two values

Algebra:
 x + y

 (3x – 5)/8

 x2 – y2

9

variables (e.g., x or y)

operator (e.g., +, -, *, …)

literal (e.g., 8)

Boolean algebra

Boolean algebra is a branch of algebra where variables
can only have two values

Literals: True, False (alternatively: 1, 0)

Operators?

10

AND operation – Conjunction

X Y X AND Y

FALSE FALSE FALSE

FALSE TRUE FALSE

TRUE FALSE FALSE

TRUE TRUE TRUE

X Y X ∧ Y

0 0 0

0 1 0

1 0 0

1 1 1

11

Only TRUE if both (or all) values are TRUE

Example: I’m going to hang out if I finish my
homework AND it doesn’t get too late.

OR operation – Disjunction

X Y X OR Y

FALSE FALSE FALSE

FALSE TRUE TRUE

TRUE FALSE TRUE

TRUE TRUE TRUE

X Y X ∨ Y

0 0 0

0 1 1

1 0 1

1 1 1

12

TRUE at least one value is TRUE

NOT operation – Negation

X NOT X

FALSE TRUE

TRUE FALSE

X ¬ X

0 1

1 0

13

Negates or flips the value

Example: I’m going to hate CS51. NOT.

XOR operation – Exclusive OR

X Y X XOR Y

FALSE FALSE FALSE

FALSE TRUE TRUE

TRUE FALSE TRUE

TRUE TRUE FALSE

X Y X ⊕ Y

0 0 0

0 1 1

1 0 1

1 1 0

14

TRUE if exactly one value is TRUE

• 0 ∨ ¬ 0

• 1 ∧ ¬ 1

• ¬ (1 ∧ 0)

• 0 ∧ ¬ 1

• ¬ (1 ∨ ¬ 1)

• 1 ⊕ ¬ 1

• (1 ∧ (1 ⊕ ¬(0 ∨ ¬ 1)))

PRACTICE TIME – Evaluate these expressions

15

X Y X ⊕ Y

0 0 0

0 1 1

1 0 1

1 1 0

X Y X ∧ Y

0 0 0

0 1 0

1 0 0

1 1 1

X Y X ∨ Y

0 0 0

0 1 1

1 0 1

1 1 1

AND

OR XOR

X ¬ X

0 1

1 0

NOT

• 0 ∨ ¬ 0= 0 ∨ 1 = 1

• 1 ∧ ¬ 1 = 1 ∧ 0 = 0

• ¬ (1 ∧ 0) = ¬ 0 = 1

• 0 ∧ ¬ 1 = 0 ∧ 0 = 0

• ¬ (1 ∨ ¬ 1) = ¬ (1 ∨ 0) = ¬ 1 = 0

• 1 ⊕ ¬ 1 = 1 ⊕ 0 = 1

• (1 ∧ (1 ⊕ ¬(0 ∨ ¬ 1))) =
(1 ∧ (1 ⊕ ¬(0 ∨ 0))) =
(1 ∧ (1 ⊕ ¬1))=
(1 ∧ (1 ⊕0))= 1 ∧ 1 = 1

ANSWER– Evaluate these expressions

16

We can have Boolean functions with any number of variables:

For example, AND and OR generalize as expected:

Boolean functions of three+ variables

17

X Y Z AND(X,Y,Z) OR(X,Y,Z)

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 0 1

1 0 0 0 1

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Operator precedence

2 + 3 * 5 =

(2 + 3) * 5 =

18

Operator precedence

2 + 3 * 5 = 17

(2 + 3) * 5 = 25

19

Boolean operator precedence

1 ∨ 1 ∧ 0 =

¬0 ∧ 0 =

20

Boolean operator precedence

1 ∨ 1 ∧ 0 = 1

¬0 ∧ 0 = 0

21

Most common convention:

lowest precedence (happens later)

highest precedence (happens first)

¬
∧
∨

Boolean operator precedence: use parens

(1 ∨ 1) ∧ 0 = 0

¬(0 ∧ 0) = 1

22

Most common convention:

lowest precedence (happens later)

highest precedence (happens first)

()
¬
∧
∨

Programming lang

Distributive law

𝑥 𝑦 + 𝑧 =	

23

Distributive law

𝑥 𝑦 + 𝑧 = 𝑥𝑦 + 𝑧𝑦	

24

Distributive law in Boolean algebra

𝑥	∧ 𝑦	∨ 𝑧 =	

25

Distributive law in Boolean algebra

𝑥	∧ 𝑦	∨ 𝑧 = 𝑥	∧ 𝑦 	∨ x	∧ 𝑧

26

How would you check this?

Distributive law in Boolean algebra

𝑥	∧ 𝑦	∨ 𝑧 = 𝑥	∧ 𝑦 	∨ x	∧ 𝑧

27

X Y Z Y ∨ Z X ∧ (Y∨ Z) (X ∧ Y) (X ∧ Z) (X ∧ Y) ∨ (X ∧ Z)

0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 1 0 1 0 0 0 0

0 1 1 1 0 0 0 0

1 0 0 0 0 0 0 0

1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1

1 1 1 1 1 1 1 1

• ¬ (X ∧ Y) =

• ¬ (X ∨ Y) =

PRACTICE TIME – De Morgan’s laws

X Y X ∧ Y ¬ (X ∧ Y) X ∨ Y ¬ (X ∨ Y) ¬ X ¬ Y ¬ X ∧ ¬ Y ¬ X ∨ ¬ Y

0 0

0 1

1 0

1 1

28

• ¬ (X ∧ Y) = ¬ X ∨ ¬ Y

• ¬ (X ∨ Y) = ¬ X ∧ ¬ Y

ANSWER – De Morgan’s laws

29

X Y X ∧ Y ¬ (X ∧ Y) X ∨ Y ¬ (X ∨ Y) ¬ X ¬ Y ¬ X ∧ ¬ Y ¬ X ∨ ¬ Y

0 0 0 1 0 1 1 1 1 1

0 1 0 1 1 0 1 0 0 1

1 0 0 1 1 0 0 1 0 1

1 1 1 0 1 0 0 0 0 0

A mathematical lineage to the first computer

30

Augustus De Morgan Ada Lovelace Charles Babbage

Theorem (Boole, 1847):

Any Boolean function can be represented as a disjunction (i.e., OR) of conjunctions (i.e.,
ANDs) of its arguments and their negation (NOT). This is also known as disjunctive normal
form (DNF) or a sum of products/minterms.

Disjunctive normal form (DNF)

31

(A ∧ ¬ B ∧ C) ∨ (¬ A ∧ ¬ B ∧ C) ∨ (A ∧ B ∧ C) ∨ …

conjunction: ANDed variables

disjunctive: ORed together

Disjunctive normal form (DNF)

One way this can happen is by using “laws”, specifically:

32

double negation

distributive law

De Morgan’s laws

Row
number

X Y Z Minterm

0 0 0 0 𝑚! = ¬𝑋 ∧ ¬𝑌 ∧ ¬𝑍
1 0 0 1 𝑚" = ¬𝑋 ∧ ¬𝑌 ∧ 𝑍
2 0 1 0 𝑚# = ¬𝑋 ∧ 𝑌 ∧ ¬𝑍
3 0 1 1 𝑚$ = ¬𝑋 ∧ 𝑌 ∧ 𝑍
4 1 0 0 𝑚% = 𝑋 ∧ ¬𝑌 ∧ ¬𝑍
5 1 0 1 𝑚& = 𝑋 ∧ ¬𝑌 ∧ 𝑍
6 1 1 0 𝑚' = 𝑋 ∧ 𝑌 ∧ ¬𝑍
7 1 1 1 𝑚(= 𝑋 ∧ 𝑌 ∧ 𝑍

Minterms

33

Minterm: a Boolean
expression consisting of the
conjunction (AND) of all
variables of a Boolean
function

Another way this can happen is directly from the truth table

Row
number

X Y Z 𝑚$ = ¬𝑋 ∧ 𝑌 ∧ 𝑍

0 0 0 0 0
1 0 0 1 0
2 0 1 0 0
3 0 1 1 1
4 1 0 0 0
5 1 0 1 0
6 1 1 0 0
7 1 1 1 0

Minterms

34

Minterm: a Boolean
expression consisting of the
conjunction (AND) of all
variables of a Boolean
function

Note that a minterm will be TRUE/1 for exactly one entry in
the truth table

An example: majority function

35

X Y Z MAJ(X,Y,Z)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

MAJ: A majority of the variables are TRUE (1)

Minterms -> DNF

36

X Y Z MAJ(X,Y,Z)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Key idea: identify and combine entries that are 1

Minterms -> DNF

37

X Y Z MAJ(X,Y,Z)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Key idea: identify and combine entries that are 1

OR these together

If any one of these is the entry, then we are 1

MAJ(X, Y, Z) =	(¬X ∧ Y ∧ Z) ∨ (X ∧ ¬Y ∧ Z) ∨ (X ∧ Y ∧ ¬Z) ∨ (X ∧ Y ∧ Z)

DNF of MAJ function

38

X Y Z MAJ(X,Y,Z) Minterm

0 0 0 0 𝑚! = ¬𝑋 ∧ ¬𝑌 ∧ ¬𝑍
0 0 1 0 𝑚" = ¬𝑋 ∧ ¬𝑌 ∧ 𝑍
0 1 0 0 𝑚# = ¬𝑋 ∧ 𝑌 ∧ ¬𝑍
0 1 1 1 𝐦𝟑 = ¬𝐗 ∧ 𝐘 ∧ 𝐙
1 0 0 0 𝑚% = 𝑋 ∧ ¬𝑌 ∧ ¬𝑍
1 0 1 1 𝐦𝟓 = 𝐗 ∧ ¬𝐘 ∧ 𝐙
1 1 0 1 𝐦𝟔 = 𝐗 ∧ 𝐘 ∧ ¬𝐙
1 1 1 1 𝐦𝟕 = 𝐗 ∧ 𝐘 ∧ 𝐙

ODD(𝑋!, 𝑋", … , 𝑋#) = 1 if an odd number of arguments is 1, 0 otherwise

PRACTICE TIME - ODD function using DNF

39

X Y Z ODD(X,Y,Z) Minterm
0 0 0 0 𝑚$ =
0 0 1 1 𝑚! =
0 1 0 1 𝑚" =
0 1 1 0 𝑚% =
1 0 0 1 𝑚&	=
1 0 1 0 𝑚' =
1 1 0 0 𝑚(=
1 1 1 1 𝑚) =

ODD(X, Y, Z) =	

ODD(𝑋!, 𝑋", … , 𝑋#) = 1 if an odd number of arguments is 1, 0 otherwise

PRACTICE TIME - ODD function using DNF

40

X Y Z ODD(X,Y,Z) Minterm
0 0 0 0 𝑚$ =
0 0 1 1 𝑚! =	¬𝑋 ∧ ¬𝑌 ∧ 𝑍
0 1 0 1 𝑚" = ¬𝑋 ∧ 𝑌 ∧ ¬𝑍
0 1 1 0 𝑚% =
1 0 0 1 𝑚&	=	𝑋 ∧ ¬𝑌 ∧ ¬𝑍
1 0 1 0 𝑚' =
1 1 0 0 𝑚(=
1 1 1 1 𝑚) = X ∧ Y ∧ Z

ODD(X, Y, Z) =	(¬X ∧ ¬Y ∧ Z) ∨ (¬X ∧ Y ∧ ¬Z) ∨ (X ∧ ¬Y ∧ ¬Z) ∨ (X ∧ Y ∧ Z)

Any Boolean function can be represented as a conjunction (i.e., AND) of disjunctions (i.e.,
ORs) of its arguments and their negation (NOT). This is also known as conjunctive normal
form (CNF) or a product of sums/maxterms.

Conjunctive normal form (CNF)

41

(A ∨ ¬ B ∨ C) ∧ (¬ A ∨ ¬ B ∨ C) ∧ (A ∨ B ∨ C) ∧ …

disjunction: ORed variables

conjunctive: ANDed together

Maxterms

42

Maxterm: a disjunction (OR) of all variables of a Boolean function

Row
number

X Y Z Maxterm

0 0 0 0 𝑀! = 𝑋 ∨ 𝑌 ∨ 𝑍
1 0 0 1 𝑀" = 𝑋 ∨ 𝑌 ∨ ¬𝑍
2 0 1 0 𝑀# = 𝑋 ∨ ¬𝑌 ∨ 𝑍
3 0 1 1 𝑀$ = 𝑋 ∨ ¬𝑌 ∨ ¬𝑍
4 1 0 0 𝑀% = ¬𝑋 ∨ 𝑌 ∨ 𝑍
5 1 0 1 𝑀& = ¬𝑋 ∨ 𝑌 ∨ ¬𝑍
6 1 1 0 𝑀' = ¬𝑋 ∨ ¬𝑌 ∨ 𝑍
7 1 1 1 𝑀(= ¬𝑋 ∨ ¬𝑌 ∨ ¬𝑍

The maxterm is formed by
ORing together the
“opposite” of the value in
the truth table

Maxterms

43

Note that a maxterm will be TRUE/1 for all entries except one
in the truth table

Row
number

X Y Z 𝑀& = ¬𝑋 ∨ 𝑌 ∨ ¬𝑍

0 0 0 0 1
1 0 0 1 1
2 0 1 0 1
3 0 1 1 1
4 1 0 0 1
5 1 0 1 0
6 1 1 0 1
7 1 1 1 1

Maxterms -> CNF

44

X Y Z MAJ(X,Y,Z)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Key idea: identify and combine entries that are 0, i.e.,
as long as it’s not one of these entries, it’s 1

Maxterms -> CNF

45

AND these together

X Y Z MAJ(X,Y,Z)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Key idea: identify and combine entries that are 0, i.e.,
as long as it’s not one of these entries, it’s 1

MAJ(X, Y, Z) =	(X ∨ Y ∨ Z) ∧ (X ∨ Y ∨ ¬Z) ∧ (X ∨ ¬Y ∨ Z) ∧ (¬X ∨ Y ∨ Z)

CNF of MAJ function

46

X Y Z MAJ(X,Y,Z) Maxterm

0 0 0 0 𝑀! = 𝑋 ∨ 𝑌 ∨ 𝑍
0 0 1 0 𝑀" = 𝑋 ∨ 𝑌 ∨ ¬𝑍

0 1 0 0 𝑀# = 𝑋 ∨ ¬𝑌 ∨ 𝑍

0 1 1 1 𝑀$ = 𝑋 ∨ ¬𝑌 ∨ ¬𝑍

1 0 0 0 𝑀% = ¬𝑋 ∨ 𝑌 ∨ 𝑍

1 0 1 1 𝑀& = ¬𝑋 ∨ 𝑌 ∨ ¬𝑍

1 1 0 1 𝑀' = ¬𝑋 ∨ ¬𝑌 ∨ 𝑍

1 1 1 1 𝑀(= ¬𝑋 ∨ ¬𝑌 ∨ ¬𝑍

MAJ(X, Y, Z) =	(X ∨ Y ∨ Z) ∧ (X ∨ Y ∨ ¬Z) ∧ (X ∨ ¬Y ∨ Z) ∧ (¬X ∨ Y ∨ Z)

MAJ(0, 1, 1) = ?

47

X Y Z MAJ(X,Y,Z) Maxterm

0 0 0 0 𝑀! = 𝑋 ∨ 𝑌 ∨ 𝑍
0 0 1 0 𝑀" = 𝑋 ∨ 𝑌 ∨ ¬𝑍

0 1 0 0 𝑀# = 𝑋 ∨ ¬𝑌 ∨ 𝑍

0 1 1 1 𝑀$ = 𝑋 ∨ ¬𝑌 ∨ ¬𝑍

1 0 0 0 𝑀% = ¬𝑋 ∨ 𝑌 ∨ 𝑍

1 0 1 1 𝑀& = ¬𝑋 ∨ 𝑌 ∨ ¬𝑍

1 1 0 1 𝑀' = ¬𝑋 ∨ ¬𝑌 ∨ 𝑍

1 1 1 1 𝑀(= ¬𝑋 ∨ ¬𝑌 ∨ ¬𝑍

MAJ(X, Y, Z) =	(X ∨ Y ∨ Z) ∧ (X ∨ Y ∨ ¬Z) ∧ (X ∨ ¬Y ∨ Z) ∧ (¬X ∨ Y ∨ Z)

MAJ(0, 1, 1) = ?

48

X Y Z MAJ(X,Y,Z) Maxterm

0 0 0 0 𝑀! = 𝑋 ∨ 𝑌 ∨ 𝑍
0 0 1 0 𝑀" = 𝑋 ∨ 𝑌 ∨ ¬𝑍

0 1 0 0 𝑀# = 𝑋 ∨ ¬𝑌 ∨ 𝑍

0 1 1 1 𝑀$ = 𝑋 ∨ ¬𝑌 ∨ ¬𝑍

1 0 0 0 𝑀% = ¬𝑋 ∨ 𝑌 ∨ 𝑍

1 0 1 1 𝑀& = ¬𝑋 ∨ 𝑌 ∨ ¬𝑍

1 1 0 1 𝑀' = ¬𝑋 ∨ ¬𝑌 ∨ 𝑍

1 1 1 1 𝑀(= ¬𝑋 ∨ ¬𝑌 ∨ ¬𝑍

1 1 1 1

MAJ(X, Y, Z) =	(X ∨ Y ∨ Z) ∧ (X ∨ Y ∨ ¬Z) ∧ (X ∨ ¬Y ∨ Z) ∧ (¬X ∨ Y ∨ Z)

MAJ(1, 0, 0) = ?

49

X Y Z MAJ(X,Y,Z) Maxterms

0 0 0 0 𝑀! = 𝑋 ∨ 𝑌 ∨ 𝑍
0 0 1 0 𝑀" = 𝑋 ∨ 𝑌 ∨ ¬𝑍

0 1 0 0 𝑀# = 𝑋 ∨ ¬𝑌 ∨ 𝑍

0 1 1 1 𝑀$ = 𝑋 ∨ ¬𝑌 ∨ ¬𝑍

1 0 0 0 𝑀% = ¬𝑋 ∨ 𝑌 ∨ 𝑍

1 0 1 1 𝑀& = ¬𝑋 ∨ 𝑌 ∨ ¬𝑍

1 1 0 1 𝑀' = ¬𝑋 ∨ ¬𝑌 ∨ 𝑍

1 1 1 1 𝑀(= ¬𝑋 ∨ ¬𝑌 ∨ ¬𝑍

MAJ(X, Y, Z) =	(X ∨ Y ∨ Z) ∧ (X ∨ Y ∨ ¬Z) ∧ (X ∨ ¬Y ∨ Z) ∧ (¬X ∨ Y ∨ Z)

MAJ(1, 0, 0) = ?

50

X Y Z MAJ(X,Y,Z) Maxterms

0 0 0 0 𝑀! = 𝑋 ∨ 𝑌 ∨ 𝑍
0 0 1 0 𝑀" = 𝑋 ∨ 𝑌 ∨ ¬𝑍

0 1 0 0 𝑀# = 𝑋 ∨ ¬𝑌 ∨ 𝑍

0 1 1 1 𝑀$ = 𝑋 ∨ ¬𝑌 ∨ ¬𝑍

1 0 0 0 𝑀% = ¬𝑋 ∨ 𝑌 ∨ 𝑍

1 0 1 1 𝑀& = ¬𝑋 ∨ 𝑌 ∨ ¬𝑍

1 1 0 1 𝑀' = ¬𝑋 ∨ ¬𝑌 ∨ 𝑍

1 1 1 1 𝑀(= ¬𝑋 ∨ ¬𝑌 ∨ ¬𝑍

1 1 1 0

ODD(𝑋!, 𝑋", … , 𝑋#) = 1 if an odd number of arguments is 1, 0 otherwise

PRACTICE TIME - ODD function using CNF

51

X Y Z ODD(X,Y,Z) Maxterms
0 0 0 0 𝑀$ =
0 0 1 1 𝑀! =
0 1 0 1 𝑀" =
0 1 1 0 𝑀% =
1 0 0 1 𝑀&	=
1 0 1 0 𝑀' =
1 1 0 0 𝑀(=
1 1 1 1 𝑀) =

ODD(X, Y, Z) =	

ODD(𝑋!, 𝑋", … , 𝑋#) = 1 if an odd number of arguments is 1, 0 otherwise

PRACTICE TIME - ODD function using CNF

52

X Y Z ODD(X,Y,Z) Maxterms
0 0 0 0 𝑀$ = 𝑋 ∨ 𝑌 ∨ 𝑍
0 0 1 1 𝑀! =
0 1 0 1 𝑀" =
0 1 1 0 𝑀% = 𝑋 ∨ ¬𝑌 ∨ ¬𝑍
1 0 0 1 𝑀&	=
1 0 1 0 𝑀' = ¬𝑋 ∨ 𝑌 ∨ ¬𝑍
1 1 0 0 𝑀(= ¬𝑋 ∨ ¬𝑌 ∨ 𝑍
1 1 1 1 𝑀) =

ODD(X, Y, Z) = (X ∨ Y ∨ Z) ∧ (X ∨ Y ∨ ¬Z) ∧ (X ∨ ¬Y ∨ Z) ∧ (¬X ∨ Y ∨ Z)

Circling back…

53

This was the first
lecture for our
“Computer Systems”
section

How does Boolean
Algebra fit in?

CPU

54

CPU: central processing unit

55

CPU

Inside a CPU

56

Gates

Inside a CPU

57

Gates

NOT

AND

OR

XOR

Gates

𝑥	∧ 𝑦	∨ 𝑧 =

58

𝑥
𝑦
𝑧

Abstraction

59

Physical components, e.g., transistors

Integrated circuits

Applications

Algorithms and data structures

Programming languages

Operating system

Architecture

High level of abstraction

Low level of abstraction

Software

Hardware

https://commons.wikimedia.org/wiki/File:Transistorer_(cropped).jpg

Transistors

60

• Transistors are semiconductor devices made out of silicon.

• They act as switches that can be open or closed by applying electricity.

• Integrated circuits in modern computers are built off billions of
transistors.

• They are small – you can fit a few thousand of them across the width of
a human hair!

• They are fast – they can switch states millions of times per second.

• They are reliable – they can run without any issue for decades.

• Invented in 1947 by Bardeen, Brattain, and Shockley at Bell Lab.
• They shared the 1956 Nobel Prize in Physics for their achievement.

• A lot of development of transistors and circuits took place in Santa Clara
Valley, which by the 1980s started being referred to as the Silicon Valley.

https://commons.wikimedia.org/wiki/File:Transistorer_(cropped).jpg

Transistors

61

Simplifying Boolean formulas

62

MAJ(X, Y, Z) =	(X ∨ Y ∨ Z) ∧ (X ∨ Y ∨ ¬Z) ∧ (X ∨ ¬Y ∨ Z) ∧ (¬X ∨ Y ∨ Z)

MAJ(X, Y, Z) =	(¬X ∧ Y ∧ Z) ∨ (X ∧ ¬Y ∧ Z) ∨ (X ∧ Y ∧ ¬Z) ∨ (X ∧ Y ∧ Z)

DNF

CNF

Both of these are pretty long. Can we come up with a simpler
(shorter) representation?

Simplifying Boolean formulas

63

MAJ(X, Y, Z) =	(X ∨ Y ∨ Z) ∧ (X ∨ Y ∨ ¬Z) ∧ (X ∨ ¬Y ∨ Z) ∧ (¬X ∨ Y ∨ Z)

MAJ(X, Y, Z) =	(¬X ∧ Y ∧ Z) ∨ (X ∧ ¬Y ∧ Z) ∨ (X ∧ Y ∧ ¬Z) ∨ (X ∧ Y ∧ Z)

DNF

CNF

For example:

MAJ(X, Y, Z) =	(X ∧ Y) ∨ (Y ∧ Z) ∨ (Z ∧ X)

Karnaugh Maps (aka, K-maps)

Another approach for creating a Boolean function from a truth table

64

X Y F

0 0 1

0 1 0

1 0 1

1 1 0

Karnaugh Maps (aka, K-maps)

Another approach for creating a Boolean function from a truth table

65

X Y F

0 0 1

0 1 0

1 0 1

1 1 0

1 1

0 0

0

0 1

1

X

Y

Gray Code

Karnaugh Maps (aka, K-maps)

66

1 1

0 0

0

0 1

1

X

Y

Create groups of 1s:
• Only contain 1s
• Must be a square or rectangle
• Area must be a power of 2
• Groups should be as large as possible
• Groups can overlap
• Groups can wrap around
• All 1s must be covered

Karnaugh Maps (aka, K-maps)

67

1 1

0 0

0

0 1

1

X

Y

Create groups of 1s:
• Only contain 1s
• Must be a square or rectangle
• Area must be a power of 2
• Groups should be as large as possible
• Groups can overlap
• Groups can wrap around
• All 1s must be covered

Karnaugh Maps (aka, K-maps)

68

1 0

0 1

0

0 1

1

X

Y

Create groups of 1s:
• Only contain 1s
• Must be a square or rectangle
• Area must be a power of 2
• Groups should be as large as possible
• Groups can overlap
• Groups can wrap around
• All 1s must be covered

Karnaugh Maps (aka, K-maps)

69

1 0

0 1

0

0 1

1

X

Y

Create groups of 1s:
• Only contain 1s
• Must be a square or rectangle
• Area must be a power of 2
• Groups should be as large as possible
• Groups can overlap
• Groups can wrap around
• All 1s must be covered

Karnaugh Maps (aka, K-maps)

70

1 0

1 1

0

0 1

1

X

Y

Create groups of 1s:
• Only contain 1s
• Must be a square or rectangle
• Area must be a power of 2
• Groups should be as large as possible
• Groups can overlap
• Groups can wrap around
• All 1s must be covered

Karnaugh Maps (aka, K-maps)

71

1 0

1 1

0

0 1

1

X

Y

Create groups of 1s:
• Only contain 1s
• Must be a square or rectangle
• Area must be a power of 2
• Groups should be as large as possible
• Groups can overlap
• Groups can wrap around
• All 1s must be covered

Karnaugh Maps (aka, K-maps)

72

1 1

0 0

0

0 1

1

X

Y

Each group becomes a conjunction:
• Look for the variable(s) that don’t

change:
• If it stays a 1, you add the

variable as is
• If it stays a 0, you add the

negation of the variable
• OR the conjunctions together

What does this become?

Karnaugh Maps (aka, K-maps)

73

1 1

0 0

0

0 1

1

X

Y

Each group becomes a conjunction:
• Look for the variable(s) that don’t

change:
• If it stays a 1, you add the

variable as is
• If it stays a 0, you add the

negation of the variable
• OR the conjunctions together

¬Y

Karnaugh Maps (aka, K-maps)

74

1 1

0 0

0

0 1

1

X

Y

¬Y

X Y F

0 0 1

0 1 0

1 0 1

1 1 0

Karnaugh Maps (aka, K-maps)

75

1 0

1 1

0

0 1

1

X

Y

Each group becomes a conjunction:
• Look for the variable(s) that don’t

change:
• If it stays a 1, you add the

variable as is
• If it stays a 0, you add the

negation of the variable
• OR the conjunctions together

What does this become?

Karnaugh Maps (aka, K-maps)

76

1 0

1 1

0

0 1

1

X

Y

Each group becomes a conjunction:
• Look for the variable(s) that don’t

change:
• If it stays a 1, you add the

variable as is
• If it stays a 0, you add the

negation of the variable
• OR the conjunctions together

Y ¬X
∨

Karnaugh Maps (aka, K-maps)

77

1 0

1 1

0

0 1

1

X

Y

Each group becomes a conjunction:
• Look for the variable(s) that don’t

change:
• If it stays a 1, you add the

variable as is
• If it stays a 0, you add the

negation of the variable
• OR the conjunctions together

Y ¬X∨

Practice Problems – Problem 1

• You are given the following truth table for a Boolean function with three variables, A, B, and C,
and an output column F.

• What are the disjunctive and conjunctive normal forms based on this truth table?

78

A B C F

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

Practice Problems – Problem 2

Assuming x = 6, y = 2, z = 12. What would the following Python expressions evaluate to?

• x == 10 or x < 5

• x != 7 and x > 3

• not (x >= 5 and y <= 2)

• (x < 0) or (x >= 0)

• not (x != x)

• x > 1 and (z / x) != 2

• x <= 0 or (z / x) == 1

• x == 4 and y == 4

79

Practice Problems – Answer 1

• Disjunctive normal form:
 F = (¬A ∧ ¬B ∧ ¬C) ∨ (¬A ∧ B ∧ ¬C) ∨ (A ∧ ¬B ∧ C) ∨ (A ∧ B ∧ ¬C)

• Conjunctive normal form:
 F = (A ∨ B ∨ ¬C) ∧ (A ∨ ¬B ∨ ¬C) ∧ (¬A ∨ B ∨ C) ∧ (¬A ∨ ¬B ∨ ¬C)

80

A B C F

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

Practice Problems – Answer 2

Assuming x = 6, y = 2, z = 12. What would the following Python expressions evaluate to?

• x == 10 or x < 5 → 6 == 10 or 6 < 5 → False or False → False

• x != 7 and x > 3 → 6 != 7 and 6 > 3 → True and True → True

• not (x >= 5 and y <= 2) → not (6 >= 5 and 2 <= 2) → not (True and True) → not True → False

• (x < 0) or (x >= 0) → 6 < 0 or 6 >= 0 → False or True → True (always true, no matter what x is)

• not (x != x) → not False → True

• x > 1 and (z / x) != 2 → 6 > 1 and (12 / 6 != 2) → True and False → False

• x <= 0 or (z / x) == 1 → 6 <= 0 or (12 / 6 == 1) → False or False → False

• x == 4 and y == 4 → 6 == 4 and 2 == 4 → False and False → False

81

