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Admin

How is Assignment 1 going?
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Booleans

What is a Boolean (e.g., a Boolean variable)?
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Booleans

What is a Boolean (e.g., Boolean variable)?
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A variable/value that only has two possible values True/1 or False/0 



Why are they called Booleans?
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Why are they called Booleans?

George Boole was a self-taught English 
mathematician (1815-1864)

He introduced binary variables and binary logic

which laid the foundation for Boolean algebra (which 
looks at how you can combine Boolean variables)
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George Boole



An aside

Anyone know what this is?
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An aside

Anyone know what this is?
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Boole crater
https://en.wikipedia.org/wiki/Boole_(crater)

https://en.wikipedia.org/wiki/Boole_(crater)
https://en.wikipedia.org/wiki/Boole_(crater)


Boolean algebra

Boolean algebra is a branch of algebra where variables 
can only have two values

Algebra: 
  x + y

  (3x – 5)/8

  x2 – y2 
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variables (e.g., x or y)

operator (e.g., +, -, *, …)

literal (e.g., 8)



Boolean algebra

Boolean algebra is a branch of algebra where variables 
can only have two values

Literals: True, False (alternatively: 1, 0)

Operators?
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AND operation – Conjunction

X Y X AND Y

FALSE FALSE FALSE

FALSE TRUE FALSE

TRUE FALSE FALSE

TRUE TRUE TRUE

X Y X ∧ Y

0 0 0

0 1 0

1 0 0

1 1 1

11

Only TRUE if both (or all) values are TRUE

Example: I’m going to hang out if I finish my 
homework AND it doesn’t get too late.



OR operation – Disjunction

X Y X OR Y

FALSE FALSE FALSE

FALSE TRUE TRUE

TRUE FALSE TRUE

TRUE TRUE TRUE

X Y X ∨ Y

0 0 0

0 1 1

1 0 1

1 1 1
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TRUE at least one value is TRUE



NOT operation – Negation

X NOT X

FALSE TRUE

TRUE FALSE

X ¬ X

0 1

1 0
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Negates or flips the value

Example: I’m going to hate CS51. NOT.



XOR operation – Exclusive OR

X Y X XOR Y

FALSE FALSE FALSE

FALSE TRUE TRUE

TRUE FALSE TRUE

TRUE TRUE FALSE

X Y X ⊕ Y

0 0 0

0 1 1

1 0 1

1 1 0
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TRUE if exactly one value is TRUE



• 0 ∨ ¬ 0

• 1 ∧ ¬ 1

• ¬ (1 ∧ 0)

• 0 ∧ ¬ 1

• ¬ (1 ∨ ¬ 1)

• 1 ⊕ ¬ 1

• (1 ∧ (1 ⊕ ¬(0 ∨ ¬ 1)))

PRACTICE TIME – Evaluate these expressions
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X Y X ⊕ Y

0 0 0

0 1 1

1 0 1

1 1 0

X Y X ∧ Y

0 0 0

0 1 0

1 0 0

1 1 1

X Y X ∨ Y

0 0 0

0 1 1

1 0 1

1 1 1

AND

OR XOR

X ¬ X

0 1

1 0

NOT



• 0 ∨ ¬ 0= 0 ∨ 1 = 1

• 1 ∧ ¬ 1 = 1 ∧ 0 = 0

• ¬ (1 ∧ 0) = ¬ 0 = 1

• 0 ∧ ¬ 1 = 0 ∧ 0 = 0

• ¬ (1 ∨ ¬ 1) = ¬ (1 ∨ 0) = ¬ 1 = 0

• 1 ⊕ ¬ 1 = 1 ⊕ 0 = 1

• (1 ∧ (1 ⊕ ¬(0 ∨ ¬ 1))) =
(1 ∧ (1 ⊕ ¬(0 ∨ 0))) =
(1 ∧ (1 ⊕ ¬1))=
(1 ∧ (1 ⊕0))= 1 ∧ 1 = 1

ANSWER– Evaluate these expressions
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We can have Boolean functions with any number of variables:

For example, AND and OR generalize as expected:

Boolean functions of three+ variables
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X Y Z AND(X,Y,Z) OR(X,Y,Z)

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 0 1

1 0 0 0 1

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1



Operator precedence

2 + 3 * 5 = 

(2 + 3) * 5 = 
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Operator precedence

2 + 3 * 5 = 17

(2 + 3) * 5 = 25
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Boolean operator precedence

1 ∨ 1 ∧ 0 = 

¬0 ∧ 0 = 
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Boolean operator precedence

1 ∨ 1 ∧ 0 = 1

¬0 ∧ 0 = 0
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Most common convention:

lowest precedence (happens later)

highest precedence (happens first)

¬
∧
∨



Boolean operator precedence: use parens

(1 ∨ 1) ∧ 0 = 0

¬(0 ∧ 0) = 1
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Most common convention:

lowest precedence (happens later)

highest precedence (happens first)

()
¬
∧
∨

Programming lang



Distributive law

𝑥 𝑦 + 𝑧 =	
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Distributive law

𝑥 𝑦 + 𝑧 = 𝑥𝑦 + 𝑧𝑦	
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Distributive law in Boolean algebra

𝑥	∧ 𝑦	∨ 𝑧 =	
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Distributive law in Boolean algebra

𝑥	∧ 𝑦	∨ 𝑧 = 𝑥	∧ 𝑦 	∨ x	∧ 𝑧

26

How would you check this?



Distributive law in Boolean algebra

𝑥	∧ 𝑦	∨ 𝑧 = 𝑥	∧ 𝑦 	∨ x	∧ 𝑧
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X Y Z Y ∨ Z X ∧ (Y∨ Z) (X ∧ Y) (X ∧ Z) (X ∧ Y) ∨ (X ∧ Z)

0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 1 0 1 0 0 0 0

0 1 1 1 0 0 0 0

1 0 0 0 0 0 0 0

1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1

1 1 1 1 1 1 1 1



• ¬ (X ∧ Y) = 

• ¬ (X ∨ Y) =

PRACTICE TIME – De Morgan’s laws

X Y X ∧ Y ¬ (X ∧ Y) X ∨ Y ¬ (X ∨ Y) ¬ X ¬ Y ¬ X ∧ ¬ Y ¬ X ∨ ¬ Y

0 0

0 1

1 0

1 1
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• ¬ (X ∧ Y) = ¬ X ∨ ¬ Y

• ¬ (X ∨ Y) = ¬ X ∧ ¬ Y

ANSWER – De Morgan’s laws
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X Y X ∧ Y ¬ (X ∧ Y) X ∨ Y ¬ (X ∨ Y) ¬ X ¬ Y ¬ X ∧ ¬ Y ¬ X ∨ ¬ Y

0 0 0 1 0 1 1 1 1 1

0 1 0 1 1 0 1 0 0 1

1 0 0 1 1 0 0 1 0 1

1 1 1 0 1 0 0 0 0 0



A mathematical lineage to the first computer

30

Augustus De Morgan Ada Lovelace Charles Babbage



Theorem (Boole, 1847): 

Any Boolean function can be represented as a disjunction (i.e., OR) of conjunctions (i.e., 
ANDs) of its arguments and their negation (NOT). This is also known as disjunctive normal 
form (DNF) or a sum of products/minterms. 

Disjunctive normal form (DNF)
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(A ∧ ¬ B ∧ C) ∨ (¬ A ∧ ¬ B ∧ C) ∨ (A ∧ B ∧ C) ∨ …

conjunction: ANDed variables

disjunctive: ORed together



Disjunctive normal form (DNF)

One way this can happen is by using “laws”, specifically:
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double negation

distributive law

De Morgan’s laws



Row 
number

X Y Z Minterm

0 0 0 0 𝑚! = ¬𝑋 ∧ ¬𝑌 ∧ ¬𝑍
1 0 0 1 𝑚" = ¬𝑋 ∧ ¬𝑌 ∧ 𝑍
2 0 1 0 𝑚# = ¬𝑋 ∧ 𝑌 ∧ ¬𝑍
3 0 1 1 𝑚$ = ¬𝑋 ∧ 𝑌 ∧ 𝑍
4 1 0 0 𝑚% = 𝑋 ∧ ¬𝑌 ∧ ¬𝑍
5 1 0 1 𝑚& = 𝑋 ∧ ¬𝑌 ∧ 𝑍
6 1 1 0 𝑚' = 𝑋 ∧ 𝑌 ∧ ¬𝑍
7 1 1 1 𝑚( = 𝑋 ∧ 𝑌 ∧ 𝑍

Minterms
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Minterm: a Boolean 
expression consisting of the 
conjunction (AND) of all 
variables of a Boolean 
function

Another way this can happen is directly from the truth table



Row 
number

X Y Z 𝑚$ = ¬𝑋 ∧ 𝑌 ∧ 𝑍

0 0 0 0 0
1 0 0 1 0
2 0 1 0 0
3 0 1 1 1
4 1 0 0 0
5 1 0 1 0
6 1 1 0 0
7 1 1 1 0

Minterms
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Minterm: a Boolean 
expression consisting of the 
conjunction (AND) of all 
variables of a Boolean 
function

Note that a minterm will be TRUE/1 for exactly one entry in 
the truth table



An example: majority function
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X Y Z MAJ(X,Y,Z)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

MAJ: A majority of the variables are TRUE (1)



Minterms -> DNF
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X Y Z MAJ(X,Y,Z)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Key idea: identify and combine entries that are 1



Minterms -> DNF
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X Y Z MAJ(X,Y,Z)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Key idea: identify and combine entries that are 1

OR these together

If any one of these is the entry, then we are 1



MAJ(X, Y, Z) =	(¬X ∧ Y ∧ Z) ∨ (X ∧ ¬Y ∧ Z) ∨ (X ∧ Y ∧ ¬Z) ∨ (X ∧ Y ∧ Z)

DNF of MAJ function
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X Y Z MAJ(X,Y,Z) Minterm

0 0 0 0 𝑚! = ¬𝑋 ∧ ¬𝑌 ∧ ¬𝑍
0 0 1 0 𝑚" = ¬𝑋 ∧ ¬𝑌 ∧ 𝑍
0 1 0 0 𝑚# = ¬𝑋 ∧ 𝑌 ∧ ¬𝑍
0 1 1 1 𝐦𝟑 = ¬𝐗 ∧ 𝐘 ∧ 𝐙
1 0 0 0 𝑚% = 𝑋 ∧ ¬𝑌 ∧ ¬𝑍
1 0 1 1 𝐦𝟓 = 𝐗 ∧ ¬𝐘 ∧ 𝐙
1 1 0 1 𝐦𝟔 = 𝐗 ∧ 𝐘 ∧ ¬𝐙
1 1 1 1 𝐦𝟕 = 𝐗 ∧ 𝐘 ∧ 𝐙



ODD(𝑋!, 𝑋", … , 𝑋#) = 1 if an odd number of arguments is 1, 0 otherwise

PRACTICE TIME - ODD function using DNF
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X Y Z ODD(X,Y,Z) Minterm
0 0 0 0 𝑚$ =
0 0 1 1 𝑚! =
0 1 0 1 𝑚" =
0 1 1 0 𝑚% =
1 0 0 1 𝑚&	=
1 0 1 0 𝑚' =
1 1 0 0 𝑚( =
1 1 1 1 𝑚) =

ODD(X, Y, Z) =	



ODD(𝑋!, 𝑋", … , 𝑋#) = 1 if an odd number of arguments is 1, 0 otherwise

PRACTICE TIME - ODD function using DNF
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X Y Z ODD(X,Y,Z) Minterm
0 0 0 0 𝑚$ =
0 0 1 1 𝑚! =	¬𝑋 ∧ ¬𝑌 ∧ 𝑍
0 1 0 1 𝑚" = ¬𝑋 ∧ 𝑌 ∧ ¬𝑍
0 1 1 0 𝑚% =
1 0 0 1 𝑚&	=	𝑋 ∧ ¬𝑌 ∧ ¬𝑍
1 0 1 0 𝑚' =
1 1 0 0 𝑚( =
1 1 1 1 𝑚) = X ∧ Y ∧ Z

ODD(X, Y, Z) =	(¬X ∧ ¬Y ∧ Z) ∨ (¬X ∧ Y ∧ ¬Z) ∨ (X ∧ ¬Y ∧ ¬Z) ∨ (X ∧ Y ∧ Z)



Any Boolean function can be represented as a conjunction (i.e., AND) of disjunctions (i.e., 
ORs) of its arguments and their negation (NOT). This is also known as conjunctive normal 
form (CNF) or a product of sums/maxterms. 

Conjunctive normal form (CNF)
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(A ∨ ¬ B ∨ C) ∧ (¬ A ∨ ¬ B ∨ C) ∧ (A ∨ B ∨ C) ∧ …

disjunction: ORed variables

conjunctive: ANDed together



Maxterms
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Maxterm: a disjunction (OR) of all variables of a Boolean function

Row 
number

X Y Z Maxterm

0 0 0 0 𝑀! = 𝑋 ∨ 𝑌 ∨ 𝑍
1 0 0 1 𝑀" = 𝑋 ∨ 𝑌 ∨ ¬𝑍
2 0 1 0 𝑀# = 𝑋 ∨ ¬𝑌 ∨ 𝑍
3 0 1 1 𝑀$ = 𝑋 ∨ ¬𝑌 ∨ ¬𝑍
4 1 0 0 𝑀% = ¬𝑋 ∨ 𝑌 ∨ 𝑍
5 1 0 1 𝑀& = ¬𝑋 ∨ 𝑌 ∨ ¬𝑍
6 1 1 0 𝑀' = ¬𝑋 ∨ ¬𝑌 ∨ 𝑍
7 1 1 1 𝑀( = ¬𝑋 ∨ ¬𝑌 ∨ ¬𝑍

The maxterm is formed by 
ORing together the 
“opposite” of the value in 
the truth table



Maxterms
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Note that a maxterm will be TRUE/1 for all entries except one 
in the truth table

Row 
number

X Y Z 𝑀& = ¬𝑋 ∨ 𝑌 ∨ ¬𝑍

0 0 0 0 1
1 0 0 1 1
2 0 1 0 1
3 0 1 1 1
4 1 0 0 1
5 1 0 1 0
6 1 1 0 1
7 1 1 1 1



Maxterms -> CNF
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X Y Z MAJ(X,Y,Z)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Key idea: identify and combine entries that are 0, i.e.,
as long as it’s not one of these entries, it’s 1



Maxterms -> CNF
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AND these together

X Y Z MAJ(X,Y,Z)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Key idea: identify and combine entries that are 0, i.e.,
as long as it’s not one of these entries, it’s 1



MAJ(X, Y, Z) =	(X ∨ Y ∨ Z) ∧ (X ∨ Y ∨ ¬Z) ∧ (X ∨ ¬Y ∨ Z) ∧ (¬X ∨ Y ∨ Z)

CNF of MAJ function
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X Y Z MAJ(X,Y,Z) Maxterm

0 0 0 0 𝑀! = 𝑋 ∨ 𝑌 ∨ 𝑍
0 0 1 0 𝑀" = 𝑋 ∨ 𝑌 ∨ ¬𝑍

0 1 0 0 𝑀# = 𝑋 ∨ ¬𝑌 ∨ 𝑍

0 1 1 1 𝑀$ = 𝑋 ∨ ¬𝑌 ∨ ¬𝑍

1 0 0 0 𝑀% = ¬𝑋 ∨ 𝑌 ∨ 𝑍

1 0 1 1 𝑀& = ¬𝑋 ∨ 𝑌 ∨ ¬𝑍

1 1 0 1 𝑀' = ¬𝑋 ∨ ¬𝑌 ∨ 𝑍

1 1 1 1 𝑀( = ¬𝑋 ∨ ¬𝑌 ∨ ¬𝑍



MAJ(X, Y, Z) =	(X ∨ Y ∨ Z) ∧ (X ∨ Y ∨ ¬Z) ∧ (X ∨ ¬Y ∨ Z) ∧ (¬X ∨ Y ∨ Z)

MAJ(0, 1, 1) = ?
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X Y Z MAJ(X,Y,Z) Maxterm

0 0 0 0 𝑀! = 𝑋 ∨ 𝑌 ∨ 𝑍
0 0 1 0 𝑀" = 𝑋 ∨ 𝑌 ∨ ¬𝑍

0 1 0 0 𝑀# = 𝑋 ∨ ¬𝑌 ∨ 𝑍

0 1 1 1 𝑀$ = 𝑋 ∨ ¬𝑌 ∨ ¬𝑍

1 0 0 0 𝑀% = ¬𝑋 ∨ 𝑌 ∨ 𝑍

1 0 1 1 𝑀& = ¬𝑋 ∨ 𝑌 ∨ ¬𝑍

1 1 0 1 𝑀' = ¬𝑋 ∨ ¬𝑌 ∨ 𝑍

1 1 1 1 𝑀( = ¬𝑋 ∨ ¬𝑌 ∨ ¬𝑍



MAJ(X, Y, Z) =	(X ∨ Y ∨ Z) ∧ (X ∨ Y ∨ ¬Z) ∧ (X ∨ ¬Y ∨ Z) ∧ (¬X ∨ Y ∨ Z)

MAJ(0, 1, 1) = ?
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X Y Z MAJ(X,Y,Z) Maxterm

0 0 0 0 𝑀! = 𝑋 ∨ 𝑌 ∨ 𝑍
0 0 1 0 𝑀" = 𝑋 ∨ 𝑌 ∨ ¬𝑍

0 1 0 0 𝑀# = 𝑋 ∨ ¬𝑌 ∨ 𝑍

0 1 1 1 𝑀$ = 𝑋 ∨ ¬𝑌 ∨ ¬𝑍

1 0 0 0 𝑀% = ¬𝑋 ∨ 𝑌 ∨ 𝑍

1 0 1 1 𝑀& = ¬𝑋 ∨ 𝑌 ∨ ¬𝑍

1 1 0 1 𝑀' = ¬𝑋 ∨ ¬𝑌 ∨ 𝑍

1 1 1 1 𝑀( = ¬𝑋 ∨ ¬𝑌 ∨ ¬𝑍

1 1 1 1



MAJ(X, Y, Z) =	(X ∨ Y ∨ Z) ∧ (X ∨ Y ∨ ¬Z) ∧ (X ∨ ¬Y ∨ Z) ∧ (¬X ∨ Y ∨ Z)

MAJ(1, 0, 0) = ?
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X Y Z MAJ(X,Y,Z) Maxterms

0 0 0 0 𝑀! = 𝑋 ∨ 𝑌 ∨ 𝑍
0 0 1 0 𝑀" = 𝑋 ∨ 𝑌 ∨ ¬𝑍

0 1 0 0 𝑀# = 𝑋 ∨ ¬𝑌 ∨ 𝑍

0 1 1 1 𝑀$ = 𝑋 ∨ ¬𝑌 ∨ ¬𝑍

1 0 0 0 𝑀% = ¬𝑋 ∨ 𝑌 ∨ 𝑍

1 0 1 1 𝑀& = ¬𝑋 ∨ 𝑌 ∨ ¬𝑍

1 1 0 1 𝑀' = ¬𝑋 ∨ ¬𝑌 ∨ 𝑍

1 1 1 1 𝑀( = ¬𝑋 ∨ ¬𝑌 ∨ ¬𝑍



MAJ(X, Y, Z) =	(X ∨ Y ∨ Z) ∧ (X ∨ Y ∨ ¬Z) ∧ (X ∨ ¬Y ∨ Z) ∧ (¬X ∨ Y ∨ Z)

MAJ(1, 0, 0) = ?
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X Y Z MAJ(X,Y,Z) Maxterms

0 0 0 0 𝑀! = 𝑋 ∨ 𝑌 ∨ 𝑍
0 0 1 0 𝑀" = 𝑋 ∨ 𝑌 ∨ ¬𝑍

0 1 0 0 𝑀# = 𝑋 ∨ ¬𝑌 ∨ 𝑍

0 1 1 1 𝑀$ = 𝑋 ∨ ¬𝑌 ∨ ¬𝑍

1 0 0 0 𝑀% = ¬𝑋 ∨ 𝑌 ∨ 𝑍

1 0 1 1 𝑀& = ¬𝑋 ∨ 𝑌 ∨ ¬𝑍

1 1 0 1 𝑀' = ¬𝑋 ∨ ¬𝑌 ∨ 𝑍

1 1 1 1 𝑀( = ¬𝑋 ∨ ¬𝑌 ∨ ¬𝑍

1 1 1 0



ODD(𝑋!, 𝑋", … , 𝑋#) = 1 if an odd number of arguments is 1, 0 otherwise

PRACTICE TIME - ODD function using CNF
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X Y Z ODD(X,Y,Z) Maxterms
0 0 0 0 𝑀$ =
0 0 1 1 𝑀! =
0 1 0 1 𝑀" =
0 1 1 0 𝑀% =
1 0 0 1 𝑀&	=
1 0 1 0 𝑀' =
1 1 0 0 𝑀( =
1 1 1 1 𝑀) =

ODD(X, Y, Z) =	



ODD(𝑋!, 𝑋", … , 𝑋#) = 1 if an odd number of arguments is 1, 0 otherwise

PRACTICE TIME - ODD function using CNF
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X Y Z ODD(X,Y,Z) Maxterms
0 0 0 0 𝑀$ = 𝑋 ∨ 𝑌 ∨ 𝑍
0 0 1 1 𝑀! =
0 1 0 1 𝑀" =
0 1 1 0 𝑀% = 𝑋 ∨ ¬𝑌 ∨ ¬𝑍
1 0 0 1 𝑀&	=
1 0 1 0 𝑀' = ¬𝑋 ∨ 𝑌 ∨ ¬𝑍
1 1 0 0 𝑀( = ¬𝑋 ∨ ¬𝑌 ∨ 𝑍
1 1 1 1 𝑀) =

ODD(X, Y, Z) = (X ∨ Y ∨ Z) ∧ (X ∨ Y ∨ ¬Z) ∧ (X ∨ ¬Y ∨ Z) ∧ (¬X ∨ Y ∨ Z)



Circling back…
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This was the first 
lecture for our 
“Computer Systems” 
section

How does Boolean 
Algebra fit in?



CPU
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CPU: central processing unit
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CPU



Inside a CPU
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Gates



Inside a CPU
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Gates

NOT

AND

OR

XOR



Gates

𝑥	∧ 𝑦	∨ 𝑧 =
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𝑥
𝑦
𝑧



Abstraction
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Physical components, e.g., transistors

Integrated circuits

Applications

Algorithms and data structures 

Programming languages

Operating system

Architecture

High level of abstraction

Low level of abstraction

Software

Hardware



https://commons.wikimedia.org/wiki/File:Transistorer_(cropped).jpg

Transistors

60



• Transistors are semiconductor devices made out of silicon. 

• They act as switches that can be open or closed by applying electricity.

• Integrated circuits in modern computers are built off billions of 
transistors.

• They are small – you can fit a few thousand of them across the width of 
a human hair!

• They are fast – they can switch states millions of times per second.

• They are reliable – they can run without any issue for decades.

• Invented in 1947 by Bardeen, Brattain, and Shockley at Bell Lab.
• They shared the 1956 Nobel Prize in Physics for their achievement.

• A lot of development of transistors and circuits took place in Santa Clara 
Valley, which by the 1980s started being referred to as the Silicon Valley. 

https://commons.wikimedia.org/wiki/File:Transistorer_(cropped).jpg

Transistors

61



Simplifying Boolean formulas
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MAJ(X, Y, Z) =	(X ∨ Y ∨ Z) ∧ (X ∨ Y ∨ ¬Z) ∧ (X ∨ ¬Y ∨ Z) ∧ (¬X ∨ Y ∨ Z)

MAJ(X, Y, Z) =	(¬X ∧ Y ∧ Z) ∨ (X ∧ ¬Y ∧ Z) ∨ (X ∧ Y ∧ ¬Z) ∨ (X ∧ Y ∧ Z)

DNF

CNF

Both of these are pretty long.  Can we come up with a simpler 
(shorter) representation?



Simplifying Boolean formulas
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MAJ(X, Y, Z) =	(X ∨ Y ∨ Z) ∧ (X ∨ Y ∨ ¬Z) ∧ (X ∨ ¬Y ∨ Z) ∧ (¬X ∨ Y ∨ Z)

MAJ(X, Y, Z) =	(¬X ∧ Y ∧ Z) ∨ (X ∧ ¬Y ∧ Z) ∨ (X ∧ Y ∧ ¬Z) ∨ (X ∧ Y ∧ Z)

DNF

CNF

For example:

MAJ(X, Y, Z) =	(X ∧ Y) ∨ (Y ∧ Z) ∨ (Z ∧ X)



Karnaugh Maps (aka, K-maps)

Another approach for creating a Boolean function from a truth table
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X Y F

0 0 1

0 1 0

1 0 1

1 1 0



Karnaugh Maps (aka, K-maps)

Another approach for creating a Boolean function from a truth table
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X Y F

0 0 1

0 1 0

1 0 1

1 1 0

1 1

0 0

0

0 1

1

X

Y

Gray Code



Karnaugh Maps (aka, K-maps)
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1 1

0 0

0

0 1

1

X

Y

Create groups of 1s:
• Only contain 1s
• Must be a square or rectangle
• Area must be a power of 2
• Groups should be as large as possible
• Groups can overlap
• Groups can wrap around
• All 1s must be covered



Karnaugh Maps (aka, K-maps)
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1 1

0 0

0

0 1

1

X

Y

Create groups of 1s:
• Only contain 1s
• Must be a square or rectangle
• Area must be a power of 2
• Groups should be as large as possible
• Groups can overlap
• Groups can wrap around
• All 1s must be covered
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Create groups of 1s:
• Only contain 1s
• Must be a square or rectangle
• Area must be a power of 2
• Groups should be as large as possible
• Groups can overlap
• Groups can wrap around
• All 1s must be covered
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Create groups of 1s:
• Only contain 1s
• Must be a square or rectangle
• Area must be a power of 2
• Groups should be as large as possible
• Groups can overlap
• Groups can wrap around
• All 1s must be covered
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Create groups of 1s:
• Only contain 1s
• Must be a square or rectangle
• Area must be a power of 2
• Groups should be as large as possible
• Groups can overlap
• Groups can wrap around
• All 1s must be covered
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Create groups of 1s:
• Only contain 1s
• Must be a square or rectangle
• Area must be a power of 2
• Groups should be as large as possible
• Groups can overlap
• Groups can wrap around
• All 1s must be covered
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Each group becomes a conjunction:
• Look for the variable(s) that don’t 

change:
• If it stays a 1, you add the 

variable as is
• If it stays a 0, you add the 

negation of the variable
• OR the conjunctions together

What does this become?
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Each group becomes a conjunction:
• Look for the variable(s) that don’t 

change:
• If it stays a 1, you add the 

variable as is
• If it stays a 0, you add the 

negation of the variable
• OR the conjunctions together

¬Y
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Each group becomes a conjunction:
• Look for the variable(s) that don’t 

change:
• If it stays a 1, you add the 

variable as is
• If it stays a 0, you add the 

negation of the variable
• OR the conjunctions together

What does this become?
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Each group becomes a conjunction:
• Look for the variable(s) that don’t 

change:
• If it stays a 1, you add the 

variable as is
• If it stays a 0, you add the 

negation of the variable
• OR the conjunctions together

Y ¬X
∨ 
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Each group becomes a conjunction:
• Look for the variable(s) that don’t 

change:
• If it stays a 1, you add the 

variable as is
• If it stays a 0, you add the 

negation of the variable
• OR the conjunctions together

Y ¬X∨ 



Practice Problems – Problem 1

• You are given the following truth table for a Boolean function with three variables, A, B, and C, 
and an output column F. 

• What are the disjunctive and conjunctive normal forms based on this truth table? 
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A B C F

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0



Practice Problems – Problem 2

Assuming x = 6, y = 2, z = 12. What would the following Python expressions evaluate to?

• x == 10 or x < 5

• x != 7 and x > 3

• not (x >= 5 and y <= 2)

• (x < 0) or (x >= 0)

• not (x != x)

• x > 1 and (z / x) != 2

• x <= 0 or (z / x) == 1

• x == 4 and y == 4
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Practice Problems – Answer 1

• Disjunctive normal form: 
 F = (¬A ∧ ¬B ∧ ¬C) ∨ (¬A ∧ B ∧  ¬C) ∨ (A ∧ ¬B ∧ C) ∨ (A ∧ B ∧ ¬C)

• Conjunctive normal form: 
 F = (A ∨ B ∨ ¬C) ∧ (A ∨ ¬B ∨ ¬C) ∧ (¬A ∨ B ∨ C) ∧ (¬A ∨ ¬B ∨ ¬C)
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A B C F

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0



Practice Problems – Answer 2

Assuming x = 6, y = 2, z = 12. What would the following Python expressions evaluate to?

• x == 10 or x < 5 → 6 == 10 or 6 < 5 → False or False → False

• x != 7 and x > 3 → 6 != 7 and 6 > 3 → True and True → True

• not (x >= 5 and y <= 2) → not (6 >= 5 and 2 <= 2) → not (True and True) → not True → False

• (x < 0) or (x >= 0) → 6 < 0 or 6 >= 0 → False or True → True (always true, no matter what x is)

• not (x != x) → not False → True 

• x > 1 and (z / x) != 2 → 6 > 1 and (12 / 6 != 2) → True and False → False

• x <= 0 or (z / x) == 1 → 6 <= 0 or (12 / 6 == 1) → False or False → False

• x == 4 and y == 4 → 6 == 4 and 2 == 4 → False and False → False

81


