
CS 50 February 17, 2026

Lecture 9: Debugging and Testing

Reminders

• Midterm is this Thursday (Feb. 19), in class

• pen and paper exam

• 75 minutes

• covers everything through lists

• one page of notes (double-sided) allowed

• examples and exercises from class make good study materials

• section 1 also has exercises posted on their page (“practice problems”)

• textbook also has good practice problems (online, linked from website)

Common Types of Errors

• Syntax Errors: there is something wrong with the structure

of the program, and Python doesn't understand it

• Runtime Errors: something goes wrong while the program

is running

• Semantic Errors: the program runs, but it doesn't do what

you want it to do

Handling Syntax Errors

1. Find the bug

2. Do you see the problem?

1. If yes, fix it!

2. If no, try running through the list of common syntax errors

3. If still no, check your class notes, discuss the problem abstractly

with a friend ("what's the right syntax for…"), or ask a

TA/instructor (it's ok to get help!)

Common Syntax Errors

• Misspelling a variable name or a function name

• Missing quotation marks around a string

• Mismatched parentheses or quotation marks

• Missing a colon at the end of an if/while/for statement

• Using = instead of ==

• Using a Python keyword as a variable name

Make sure you remembered to save your file

after making your changes!

Example 1: Syntax Errors
in = int(input("Pick a number\n"))
if in = 13:
 print("I am also fond of the number 13!")
elif in > 13:
 print("I am fond of the number 13, which is "
 + str(in-13) + " less than " + str(in)
else

 print("I am fond of the number 13, which is "

 + str(13-in) + " more than " + str(in)
in2 = input("Do you like tea?)
while in2 != "yes" and != "no":
 in2 = input("Please answer yes or no. Do you like tea?")
if in2 == "yes":
 print("Great!")
else:
 print("That's too bad.")
print("Bye!)

SyntaxError

SyntaxError

SyntaxError

SyntaxError

SyntaxError

SyntaxError

SyntaxError

SyntaxError

Handling Runtime Errors: Program Hangs

• You are probably in an infinite loop!

• Add print statements to figure out how far you got

• Add print statements to find line(s) that repeat over and

over

• Your program might also just be waiting for an input

Handling Runtime Errors: Exceptions
• NameError: Python doesn't recognize a (variable) name

• Find the bug!

• Did you forget quotation marks around a string?

• Did you misspell a variable name? Make a typo?

• Is the variable you are trying to use in scope? Use before define?

Scope
Storing a value in a variable:

1. If there is a variable with that name

in the current function's stack frame,

store the value in that variable

2. Otherwise create a new variable in

the current function's stack frame

and store the value there

Using a variable:

1. Check for a local variable with that

name. If it exists, use the value

stored in that variable

2. If not, check for a global variable with

that name. If it exists, use the value

stored in that variable

3. Otherwise get a NameError

def good_choice(num):

1 b = (num == pomona_fav)

2 return b

def check_num():

1 pomona_fav = 47

2 number = int(input())

3 if good_choice(number):

4 print("yay")

5 else:

6 print("boo")

hmc_fav = 42

check_num()

def f2(s7):

 s7 = s7 + 'd' + s5

 print("f2:", s7)

def f1(s4):

 s1 = 'c’

 s5 = s2 + s4

 print("f1:", s1)

 print("f1:", s5)

 return s1+s5

s1 = 'a'

s2 = 'b'

print(s1)

s3 = f1(s1)

print(s1, s2, s3)

print(s5)

f2(s2)

Exercise 1: Variable Scope

Handling Runtime Errors: Exceptions
• NameError: Python doesn't recognize a (variable) name

• Find the bug!

• Did you forget quotation marks around a string?

• Did you misspell a variable name? Make a typo?

• Is the variable you are trying to use in scope? Use before define?

• TypeError: Python can't perform that operation/function on that
type
• Find the bug!

• Are the types that the error reports the type you expected?

• Add a print statement on the previous line and print out all the
variables/values on that line. Are they what you expect?

• ValueError: Python can't perform that operation/function on that
value
• Find the bug!

• Add a print statement on the previous line and print out all the
variables/values on that line. Are they what you expect?

When your code runs…

Example 2: Debugging buggy code

• Simple password checking (does it contain at least 8 chars?)

def example2(): # warning: this code contains a bug!!!

 valid = False

 char_count = 0

 while not valid:

 password = input("Please enter your password:\n")

 # count number of chars

 for c in password:

 char_count += 1

 # provide feedback

 if char_count < 8:

 print("Password should contain at least 8 characters")

 else:

 print("Password " + password + " is a valid password")

 valid = True

Handling Semantic Errors

• Add print statement in the appropriate places

• Print out the value of variables that you want to keep track

of

• Compare the print out result with your expected result

Testing

• Try running your function with different values, called test
cases, and make sure it returns the right value

• Branch Testing (white-box testing)
• make sure that every line of code is executed by at least once

• for conditionals, try include a test case that makes the condition
evaluate to True and a test case that makes the condition evaluate to
False

• for loops, try to include test cases that make the program go through
the loop 0 times, 1 time, and lots of times

• Corner-Case Testing (black-box testing)
• include the "weird" values in your test cases

• e.g., for ints, include negative numbers and zero, as well as positive

• e.g., for strings, include the empty string

Testing in Python

• Create a new file called <program_name>_tester.py

• Import the functions you want to test

 from demo09 import sum_even

• Using assert statements to test program behavior

 assert <condition>

Example 3: Writing Test Cases

demo09.py

def sum_even(start, end):
 """
 Computes the sum of the even
 numbers between <start> and <end>
 (inclusive). Warning: buggy code!!

 :param start: (int) start of range
 :param end: (int) end of range

 :return: (int) sum of evens
 """

 for i in range(start, end):
 if i % 2 == 0:
 sum = i

demo09_tester.py

from demo09 import sum_even

def test_sum_even():
 assert type(sum_even(1,5)) == int
 assert sum_even(1,5) == 6
 assert sum_even(1,6) == 12
 assert sum_even(2,5) == 6
 assert sum_even(2,6) == 12
 assert sum_even(1,1) == 0
 assert sum_even(2,2) == 2

test_sum_even()

Exercise 2: Writing Test Cases

• Write a set of test cases for the following function

def square_neg2(lst):
 """
 Creates a new list of numbers where each element is
 squared if the original number is negative and
 otherwise is the same.

 :param lst (list): A list of numbers (ints or floats)

 :return (list): A new list similar to the original but
 with the negatives squared
 """

 new_list = []

 for number in lst:
 if number < 0: # if negative
 new_list.append(number**2)
 else:
 new_list.append(number)

 return new_list

Code Tracing

• Execute the program line by line by hand

• If you get the right answer by hand, add print statements

to determine where your code starts doing something

different

num = add_one(46)

add_one 1

n

return

46

None

x 47

2X

47

Exercise 3: Debugging Code
def example3(num1, num2): # WARNING: Buggy code!!!

 """

 Computes the sum of the even numbers between <start>

 and <end> (inclusive).

 :param start: (int) one end of range

 :param end: (int) other end of range

 :return: (int) sum of evens

 """

 sum_even = 0

 i = num1

 while i < num2:

 if i % 2 != 0: # if even

 sum_even = sum_even + i

 i = i + 1 # increment counter

 return sum_even # return sum of even numbers

Rubber-Duck Debugging

Take a break

Debugging…

Debugging…

	Slide 1: Lecture 9: Debugging and Testing
	Slide 2: Reminders
	Slide 3
	Slide 4: Common Types of Errors
	Slide 5: Handling Syntax Errors
	Slide 6: Common Syntax Errors
	Slide 7: Example 1: Syntax Errors
	Slide 8
	Slide 9: Handling Runtime Errors: Program Hangs
	Slide 10: Handling Runtime Errors: Exceptions
	Slide 11: Scope
	Slide 12: Exercise 1: Variable Scope
	Slide 13: Handling Runtime Errors: Exceptions
	Slide 14: When your code runs…
	Slide 15: Example 2: Debugging buggy code
	Slide 16: Handling Semantic Errors
	Slide 17: Testing
	Slide 18: Testing in Python
	Slide 19: Example 3: Writing Test Cases
	Slide 20: Exercise 2: Writing Test Cases
	Slide 21: Code Tracing
	Slide 22: Exercise 3: Debugging Code
	Slide 23: Rubber-Duck Debugging
	Slide 24: Take a break
	Slide 25: Debugging…
	Slide 26: Debugging…

