Lecture 9: Debugging and Testing

CS 50 February 17, 2026

Reminders

Midterm is this Thursday (Feb. 19), in class

pen and paper exam

75 minutes

covers everything through lists

one page of notes (double-sided) allowed

examples and exercises from class make good study materials
section 1 also has exercises posted on their page (“practice problems”)
textbook also has good practice problems (online, linked from website)

SNTWORK

.

Common Types of Errors

Syntax Errors: there is something wrong with the structure
of the program, and Python doesn't understand it

Runtime Errors: something goes wrong while the program
IS running

Semantic Errors: the program runs, but it doesn't do what
you want it to do

Handling Syntax Errors

Find the bug

EBAC2018-MACQ4: lectures ebac2018% /usr/local/bin/python3 /Users/ebac2018/Docume
nts/Teaching/050/2026sp/web/lectures/09-debugging/demo09. py
File
, Line

print(

SyntaxError:
EBAC2018-MAC@4: lectures ebac2018$ |

Do you see the problem?
If yes, fix it!
If no, try running through the list of common syntax errors

If still no, check your class notes, discuss the problem abstractly
with a friend ("what's the right syntax for..."), or ask a
TA/instructor (it's ok to get help!)

Common Syntax Errors

Misspelling a variable name or a function name
Missing quotation marks around a string

Mismatched parentheses or quotation marks

Missing a colon at the end of an if/while/for statement
Using = instead of ==

Using a Python keyword as a variable name

Make sure you remembered to save your file
after making your changes!

Example 1: Syntax Errors

in = int(input("Pick a number\n")) <= SyntaxError

if in = 13: <= SyntaxError
print("I am also fond of the number 13!")
elif in > 13:

print("I am fond of the number 13, which is
+ str(in-13) + " less than " + str(in)<@= SyntaxError

else <= SyntaxError
print("I am fond of the number 13, which is "

+ str(13-in) + " more than " + str(in) <«@== SyntaxError

in2 = input("Do you like tea?) <= SyntaxError
while in2 I= "yes" and != "no": «SyntaxError
in2 = input("Please answer yes or no. Do you like tea?")
if in2 == "yes":
print("Great!")
else:

print("That's too bad.")
print("Bye!) <= SyntaxError

Can you find the
the mistake?
12 456789

Handling Runtime Errors: Program Hangs

You are probably in an infinite loop!
Add print statements to figure out how far you got

Add print statements to find line(s) that repeat over and
over

Your program might also just be waiting for an input

Handling Runtime Errors: Exceptions

NameError: Python doesn't recognize a (variable) name
Find the bug!
Did you forget quotation marks around a string?
Did you misspell a variable name? Make a typo?
Is the variable you are trying to use in scope? Use before define?

Scope

def good choice(num):
b = (num == pomona_fav)
return b

def check num():
pomona_fav = 47
number = int(input())

Storing a value in a variable:

If there is a variable with that name
in the current function's stack frame,
store the value in that variable

Otherwise create a new variable in
the current function's stack frame
and store the value there

if good_choice(number): Using a variable:

print("yay")
else:
print("boo")

hmc_fav = 42
check_num()

Check for a local variable with that
name. If it exists, use the value
stored in that variable

If not, check for a global variable with
that name. If it exists, use the value
stored in that variable

Otherwise get a NameError

Exercise 1: Variable Scope

def £2(s7):
s7 = s7 + 'd'" + s5
print ("f2:", s7)

def f1(s4):
sl = 'c¢f
sb = s2 + s4
print ("f1:", s1)
print ("f1:", s5)
return sl+sb

sl = 'a'

s2 = 'b'

print (sl)

s3 = fl(sl)
print(sl, s2, s3)
print (s5)

f2 (s2)

Handling Runtime Errors: Exceptions

NameError: Python doesn't recognize a (variable) name

Find the bug!
Did you forget quotation marks around a string?

Did you misspell a variable name? Make a typo?
Is the variable you are trying to use in scope? Use before define?

TypeError: Python can't perform that operation/function on that

type
Find the bug!
Are the types that the error reports the type you expected?

Add a print statement on the previous line and print out all the
variables/values on that line. Are they what you expect?

ValueError: Python can't perform that operation/function on that

value

Find the bug!
Add a print statement on the previous line and print out all the
variables/values on that line. Are they what you expect?

When your code runs...

If the code works the first
time, that just means that the
bug iz more carefully hidden.

Gee, thanks for that.

© 2017 The Code Zone Visit angriestprogrammer.com for your dose of cynicism

eeeeeeeeeee————
Example 2: Debugging buggy code

Simple password checking (does it contain at least 8 chars?)

def example2(): # warning: this code contains a bug!!!
valid = False
char count = 0

while not wvalid:
password = input ("Please enter your password:\n")
count number of chars
for ¢ in password:
char count += 1

provide feedback
if char count < 8:
print ("Password should contain at least 8 characters")
else:
print ("Password " + password + " is a valid password")
valid = True

e —
Handling Semantic Errors

Add print statement in the appropriate places

Print out the value of variables that you want to keep track
of

Compare the print out result with your expected result

Testing

Try running your function with different values, called test
cases, and make sure it returns the right value

Branch Testing (white-box testing)
make sure that every line of code is executed by at least once

for conditionals, try include a test case that makes the condition
evaluate to True and a test case that makes the condition evaluate to
False

for loops, try to include test cases that make the program go through
the loop 0 times, 1 time, and lots of times

Corner-Case Testing (black-box testing)

include the "weird" values in your test cases
e.g., for ints, include negative numbers and zero, as well as positive
e.g., for strings, include the empty string

e —
Testing in Python

Create a new file called <program_name>_tester.py

Import the functions you want to test
from demo@9 import sum_even

Using assert statements to test program behavior
assert <condition>

e —
Example 3: Writing Test Cases

demo09.py demo09 tester.py

def sum_even(start, end): from demo@9 import sum_even

Computes the sum of the even
numbers between <start> and <end> def test_sum_even():

. . - assert type(sum even(1,5)) == int
(inclusive). Warning: buggy code!! Jccert sﬁﬁ éven?l c (== %)
) assert sum even(1, 6) == 12
:param start: (int) start of range assert sum even == 6
:param end: (int) end of range assert sum_eveng ; == 12
assert sum even(l 1) == 0
:return: (int) sum of evens assert sum even(2,2) == 2

for i in range(start, end) :
ifi% 0: test _sum_even()
sum = i

Exercise 2: Writing Test Cases

- Write a set of test cases for the following function

def square negZ(lst):

Creates a new list of numbers where each element 1is
squared 1f the original number 1s negative and
otherwise is the same.

:param lst (list): A list of numbers (ints or floats)

:return (list): A new list similar to the original but
wlith the negatives squared

new list = []

for number in lst:
if number < O0: # 1f negative
new list.append (number**2)

else:
new list.append (number)

return new_list

e ——
Code Tracing

Execute the program line by line by hand

num = add_one(46)

X | 47

return | 47

If you get the right answer by hand, add print statements
to determine where your code starts doing something
different

Exercise 3: Debugging Code

def example3 (numl, num2): # WARNING: Buggy code!!!

mmn

Computes the sum of the even numbers between <start>
and <end> (inclusive).

:param start: (int) one end of range

cparam end: (int) other end of range

creturn: (int) sum of evens

rmrrn

sum even = 0

1 = numl

while 1 < num?2:

if 1 % 2 !'= 0: # 1if even
sum even = sum even + 1
i =1 + 1 # increment counter

return sum even # return sum of even numbers

Rubber-Duck Debugging

WHAT'S WITH THE IT'S A DEBUGGING
RUBBER DUCK METHOD. YOU EXPLAIN THE
ON YOUR DESK PROBLEM QUT (OUD TO
HIM, AND IN THE PROCESS

| REALIZE THE SOLUTION
| 0 o ’
@ OK.. S

£/~ TI'LL TRY
|| B

Take a break

Hey you goin’
to sleep?

[think I figured out how
to debug your program

e ——
Debugging...

-
I."-. o :-.I'I
. = N |
£

~‘(rf

N
.phdcomics.com

£ JORGE CUAM

Debugging...

	Slide 1: Lecture 9: Debugging and Testing
	Slide 2: Reminders
	Slide 3
	Slide 4: Common Types of Errors
	Slide 5: Handling Syntax Errors
	Slide 6: Common Syntax Errors
	Slide 7: Example 1: Syntax Errors
	Slide 8
	Slide 9: Handling Runtime Errors: Program Hangs
	Slide 10: Handling Runtime Errors: Exceptions
	Slide 11: Scope
	Slide 12: Exercise 1: Variable Scope
	Slide 13: Handling Runtime Errors: Exceptions
	Slide 14: When your code runs…
	Slide 15: Example 2: Debugging buggy code
	Slide 16: Handling Semantic Errors
	Slide 17: Testing
	Slide 18: Testing in Python
	Slide 19: Example 3: Writing Test Cases
	Slide 20: Exercise 2: Writing Test Cases
	Slide 21: Code Tracing
	Slide 22: Exercise 3: Debugging Code
	Slide 23: Rubber-Duck Debugging
	Slide 24: Take a break
	Slide 25: Debugging…
	Slide 26: Debugging…

