
Eleanor Birrell                 February 10, 2026

Lecture 7: Sequences



Review: Programming in Python

• Values
• 47

• "hello, world!\n"

• Types
• str

• bool

• Variables
• dist_in_miles = 3.1

• a_string = "hello" 

• Operations 
• 1 * 2 * 3

• a_string + " world"

• Functions
• def example(x):

     y = 2*x

     return y

• z = example(25)

• print("hello, world!")

• Control Flow
• if

• if-else

• for x in range(10)

• while (x < 5)



Strings are Sequences

string = "Sam I am" • length function len

• x = len(string)

• indexing

• char = string[2]

• char2 = string[-2]

(‘S’, ‘a’, ‘m’, ‘ ’, ’I’, ’ ’, ‘a’, ‘m’)

0   1    2   3   4   5   6   7 



Example

• Define a function str_even that takes one parameter s (a 

string) and returns a string comprised of only the even 

characters of s 



Exercise 1

• Define a function findchar that takes two parameters, a 

string s and a character c and returns the index of the first 

instance of that character. If that character does not 

appear in the string, it returns -1

• findchar("hello", "h") == 0

• findchar("hello", "l") == 2

• findchar("hello", "a") == -1



Two ways to process each char in a string

• 1. iterate based on index

• 2. iterate over items

for char in string:

  print(char)

for i in range(len(string)):

  print(string[i])



Example

• Define a function str_even that takes one parameter s (a 

string) and returns a string comprised of only the even 

characters of s 



Exercise 2

• Without using string indexing, define a function countchar 

that takes two parameters, a string s and an char c and 

returns the number of times that character appears in the 

string. 

• countchar("hello", "h") == 1

• countchar("hello", "l") == 2

• countchar("hello", "a") == 0



slicing (1)

• For extracting part of a sequence

s[:]

s[start:]

s[:end]

s[start:end]

>>> s = "Hello world!\n\n"

>>> s[6]

 'w'

>>> s[2:7]

 'llo w'

>>> s[5:]

 ' world!\n\n'

>>> s[:5]

 ‘Hello'



slicing (2)

• For extracting part of a sequence

s[:]

s[start:]

s[:end]

s[start:end]

s[start::step]

s[:end:step]

s[start:end:step]

>>> s = "Hello world!\n\n"

>>> s[2::2]

 'lowrd\n'

>>> s[1:10:3]

 'eoo'

>>> s[:5:2]

 'Hlo'

>>> s[-3:-10:-1]

 '!dlrow ' 



test = "This is a string"

• test[10]

• test[-1]

• test[0:2]

• test[2:6]

• test[:5]

• test[::2]

Exercise 3

• Evaluate the following expressions. 



Example

• Define a function str_even that takes one parameter s (a 

string) and returns a string comprised of only the even 

characters of s 



Tuples

• a tuple is an ordered set of elements:

• examples to create a tuple:

• a tuple is a sequence, so can index into, loop over, check for 
membership, slice, etc

• operators: + and *

(3, 6, 2, 1)

tup = (3, 6, 2, 1)

tup1 = ("a", "b", "c")

tup2 = tuple("abc") #cast from str

>>> tup[1]

>>> 6



Exercise 4

• Define a function average that takes one parameter (a 

tuple vals containing a sequence of numbers) and 

returns the average of the numbers in the tuple. 



Strings and Tuples are immutable

• strings and tuples are immutable (you can make new 

sequences, but you can’t change an existing one in place)

• TypeError: ’tuple’ object does not support item assignment

tup = (3, 6, 2, 1)

tup[0] = 4


	Slide 1: Lecture 7: Sequences
	Slide 2: Review: Programming in Python
	Slide 3: Strings are Sequences
	Slide 4: Example
	Slide 5: Exercise 1
	Slide 6: Two ways to process each char in a string
	Slide 7: Example
	Slide 8: Exercise 2
	Slide 9: slicing (1)
	Slide 10: slicing (2)
	Slide 11: Exercise 3
	Slide 12: Example
	Slide 13: Tuples
	Slide 14: Exercise 4
	Slide 15: Strings and Tuples are immutable

