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ABSTRACT
As a step towards protecting user privacy, most web browsers per-
form some form of third-party HTTP cookie blocking or periodic
deletion by default, while users typically have the option to select
even stricter blocking policies. As a result, web trackers have shifted
their efforts to work around these restrictions and retain or even
improve the extent of their tracking capability.

In this paper, we shed light into the increasingly used practice of
relying on first-party cookies that are set by third-party JavaScript
code to implement user tracking and other potentially unwanted
capabilities. Although unlike third-party cookies, first-party cookies
are not sent automatically by the browser to third-parties on HTTP
requests, this tracking is possible because any included third-party
code runs in the context of the parent page, and thus can fully set
or read existing first-party cookies—which it can then leak to the
same or other third parties. Previous works that survey user privacy
on the web in relation to cookies, third-party or otherwise, have not
fully explored this mechanism. To address this gap, we propose a
dynamic data flow tracking system based on Chromium to track the
leakage of first-party cookies to third parties, and used it to conduct
a large-scale study of the Alexa top 10K websites. In total, we found
that 97.72% of the websites have first-party cookies that are set by
third-party JavaScript, and that on 57.66% of these websites there
is at least one such cookie that contains a unique user identifier
that is diffused to multiple third parties. Our results highlight the
privacy-intrusive capabilities of first-party cookies, even when a
privacy-savvy user has taken mitigative measures such as blocking
third-party cookies, or employing popular crowd-sourced filter lists
such as EasyList/EasyPrivacy and the Disconnect list.
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1 INTRODUCTION
Most of the JavaScript (JS) [8] code on modern websites is provided
by external, third-party sources [18, 26, 31, 38]. Third-party JS li-
braries execute in the context of the page that includes them and
have access to the DOM interface of that page. In many scenarios it
is preferable to allow third-party JS code to run in the context of the
parent page. For example, in the case of analytics libraries, certain
user interaction metrics (e.g., mouse movements and clicks) cannot
be obtained if JS code executes in a separate iframe.

This cross-domain inclusion of third-party JS code poses security
andprivacy risks. In theweb context, third-party tracking is arguably
the most persistent intrusion to user privacy. Multiple previous ef-
forts [21, 25, 29, 32, 34] attempt to understand such tracking. Browser
vendors are also beginning to restrict third-party tracking: Firefox by
default blocks HTTP cookies set for known trackers [2], and Safari
introduced Intelligent Tracking Prevention (ITP) that uses machine
learning techniques to identify trackers [9]. However, these efforts
largely focused on web tracking that utilizes third-party cookies,
and not much attention has been paid on exploring how first-party
cookies are being used in regard to web tracking. Since third-party
scripts that are included in the page do not have to adhere to the
restrictions of the Same Origin Policy (SOP) [28], they can set first-
party cookies on behalf of the third-party tracker. On subsequent
visits, the same JS code (or code by other third parties that runs in the
page) can read the cookies and transmit them back to the trackers.

One of the first works on web tracking, by Roesner et al. [34],
explored the case ofwithin-site tracking where a third-party script,
such as Google Analytics, sets a first-party cookie and then sends
its value back to the third-party’s server. However, that work only
explored the case where the first-party cookie is sent back to the
domain fromwhich the script originated, but not cases where other
different third parties are involved in receiving the cookie’s value.
A recent work by Fouad et al. [23] explores the case where a first-
party cookie’s value is included in a request to a third party domain,
and characterize this behavior as “first to third party cookie syncing,”
but they do not distinguish the origin of the diffused cookies, i.e.,
whether they are set by third-party code. Since previous works have
not fully explored first-party cookies with respect to their use inweb
tracking, in this work we aim at bridging this gap by shedding light
into how third parties are currently leveraging first-party cookies
to coordinate their efforts and share identifiers to track users.
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Specifically, we conducted a large-scale analysis of the Alexa
top 10K websites aimed at measuring the prevalence of web track-
ing that is based on first-party cookies set by third-party scripts,
which we hereafter refer to as external cookies. To do so, we utilize
an analysis system that observes the data flows of JS code at runtime
using dynamic taint analysis. This system automatically marks as
tainted the cookies that are written to document.cookie by code
that has a different origin than the current first-party context. When
such cookies are accessed by JS code, dynamic taint tracking makes
sure to propagate the taint to any values that are derived from the
tainted cookies, and as the tainted values reach network sinks, such
as XMLHttpRequest, an alert is raised and the event is logged.

In total, our analysis shows that 9,772 (97.72%) of the Alexa top
10K websites have first-party cookies that are set by third-party
JavaScript code, and that alarmingly, 57.66% of these websites have
at least one such cookie that contains a unique user identifier (i.e.,
tracking ID) that is diffused,whetherby theoriginal script that set the
cookie or by scripts from a different third-party, to third-party desti-
nations that are different than the party fromwhich the cookie origi-
nated.Thisanalysis is enabledby twoadditional corecontributionsof
this paper: (i) we leverage and improve themethods proposed by pre-
viousworks [21, 22] to automatically detect first-party cookies, set by
third-party JS, whose values contain information that uniquely iden-
tifies a user (whichwe refer to asUID-containing cookies), and (ii)we
develop heuristics that match the values of UID-containing cookies
with parts of the outgoing requests that contain tainted values, in
order to identify information flows between the third party that ini-
tially set the cookies, and the third parties that receive information
derived from those cookies. Our results demonstrate the privacy risk
posed by external cookies, evenwhenpopularmitigation techniques,
such as completely blocking third-party cookies, or crowd-sourced
filter lists (e.g., EasyList, EasyPrivacy) are employed, and motivate
the need for more effective privacy protection countermeasures.

We summarize our major contributions as follows:
• We bridge an important gap that has been largely neglected
in previous research by shedding light into how first-party
cookies that are set by third-party JavaScript code, which we
refer to as external cookies, are currently being used in web
tracking scenarios.

• We leverage data flow analysis techniques that give us de-
tailed insights into the runtime behaviors of JavaScript code
with respect to whether, and if so how, external cookies are
being utilized by third-party JavaScript code.

• We conduct a large-scale study of the Alexa top 10K web-
sites to assess the prevalence of external cookies and explore
whether they are being used for tracking purposes.

• We develop techniques to automatically detect tracking ID
cookies, and identify information flows between third parties
that exchange tracking IDs. We find that external cookies are
already being actively used on a large majority of the Alexa
top 10K websites to facilitate web tracking.

2 BACKGROUND
2.1 HTTPCookies
HTTP cookies can be categorized as first-party or third-party, de-
pending on their domain of origin. The cookies set when visiting

http://tracker.com/
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site=example.com
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var	http	=	new	XMLHttpRequest()
...

Figure1:Exampleofwithin-site tracking [34], asusedbyweb
analytics services. Third-party code stores UID by setting
an external cookie (3), which is later sent back to the same
third-party (4).
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<script src="adnetwork.com/script2.js"></script>

var	x	=	document.cookie;
var	cookies	=	x.split(';');
...
...

script2.js

var	http	=	new	XMLHttpRequest()
...
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http://adnetwork.com
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example.com:
  tr_uid=1234

http://adnetwork.com/
track?tr_uid=1234

Figure 2: Example of UID sharing between two third parties.
One third party reads the external cookie (6) that was set by
another third party (3), and “steal” it (7).

a website are considered as first-party, while those set by other do-
mains as a result of loading external resources are considered as
third-party. Consequently, if the same third-party resource (e.g., a
popular JavaScript library) is present on multiple websites, it en-
ables cross-site tracking: any third-party domain that host resources
referenced by multiple websites can track users across these sites.

Recognizing thepotential for thisprivacyabuse, allmajorbrowsers
provide away to block third-party cookies, with some browsers even
blocking them by default [1]. Furthermore, an experimental policy
that blocks cookies from known tracker domains has recently been
introduced in Firefox [2]. Safari also implements Intelligent Tracking
Prevention (ITP) that uses machine learning to classify whether a
domain is likely to be a tracker, and block its cookies [9].

2.2 Accessing Cookies from JavaScript
Besides including cookies in the HTTP Set-Cookie header field,
another way to set cookies in the user’s browser is to do so pro-
grammatically via JavaScript, through the document.cookie prop-
erty provided by the Document Object Model (DOM). We note that
document.cookie is the only interface that JavaScript has to the
cookies of a website, except those offered by the browser’s extension
APIs (e.g., Chrome’s chrome.cookies [3]) that are only accessible
to browser extensions, and which we do not consider in this paper.
Our focus here is how third parties that already have their JS code
embedded in first-party websites can abuse this access to track users
via cookies set by the embedded code.
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2.3 Evading Third-Party Cookie Policies
Instead of using traditional third-party cookies, online trackers can
simply have their JavaScript code execute in the first-party context
and use document.cookie to set first-party external cookies. In con-
trast to third-party cookies that can be easily blocked or deleted
without affecting the functionality and usability of the website, this
is not so straightforward in the case of first-party cookies.

In Figure 1 we present the common case of third-party services
that have code running in the first-party website and utilizing exter-
nal cookies. In this case, the third-party code sets an external cookie
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3 (note that the cookie is set for the first-party domain) and sends
its value back to the third party fromwhich the code originated 4 .
This trackingmethod,which only allows tracking a user returning to
a previously visited website, is typically employed by web analytics
services, such as Google Analytics.

Although this approach may affect user privacy, as it can track
the visits of a user to the first-party website, and possibly artifacts of
the user’s behavior while navigating the page, it can be considered
as benign, or at least acceptable. However, this is not the case when
the value of an external cookie is derived based on fingerprinting,
when it encodes information that can be used to link the user to a
specific user profile (e.g., the user’s IP address), and when the same
values are being set as both a first-party and a third-party cookie.

The most important and interesting case is when the external
cookie is leaked to a third party that is different from the one that
previously set that cookie. This could be either the result of a co-
operation between the two third-party services, or the result of a
shady third party that uses its own code to read the cookies that
were set by other third parties. As depicted in Figure 2, the code
from http://tracker.com sets an external cookie (tr_uid) 3 ,
and then different code that is fetched from another third-party do-
main (script2.js from http://adnetwork.com) 5 reads all the
first-party cookies of the website 6 , extracts the value of tr_uid,
and sends it to http://adnetwork.com 7 , essentially “stealing”
the external cookie. To make matters worse, it is quite possible to
have a large number of third parties being involved in reading those
external cookies and exchanging identifiers between them.

3 METHODOLOGY
3.1 Challenges inMeasuring External Cookies
There are many technical challenges involved in accurately mea-
suring and understanding the usage of external cookies. First, since
external cookies are not set upon receiving anHTTP responsewith a
Set-Cookie header, but rather by third-party JS code running in the
first-party context, it is not possible to distinguish external cookies
from other first-party cookies simply by observing the network traf-
fic. Thus, the measurement system needs to keep track of the origins
of each JS unit executing on the page, and be able to attribute the
setting of first-party cookies to the initiating script. That is, it needs
to hook the JS interface for updating the cookie storage of a website,
identify the initiator script domain responsible for setting cookies
through this interface and, if the initiator’s domain is different from
the first-party domain, record the cookies being set.

Second, unlike traditional third-party cookies, external cookies
are also not sent back to third parties encoded verbatim in the HTTP
request header, but are instead read back and sent by JS code, which

can potentially apply arbitrary transformations (e.g., encryption
or hashing) before sending them. Therefore, the JS cookie storage
interface also needs to be hooked for read accesses. Considering that
the read-back values from this interface might contain both external
cookies and non-external ones (i.e., first-party cookies not set by
third-party JS code), the measurement system needs a way to attach
this information to the read-back values and track any values derived
from external cookies. Furthermore, the transformations applied by
JS code to external cookies are not necessarily limited to using the
string type: for instance, an implementation of the base64 encod-
ing would first convert the characters of the input string to integers,
which are then used as indexes in a table that produces the characters
of the output string. For these reasons, a system that aims to under-
stand how external cookies are used needs to be able to gain detailed
insights into the data flows of the JS code running on a page, across
all available data types (and not limited to, e.g., just the string type).

Finally, given that we are interested in a large-scale measurement
of external cookie usage across theweb, and that a significant portion
of JS code is likely to be minified/obfuscated to deter analysis [36],
we need an automated way to analyze the results without resorting
to manual analysis of all the encountered JS code. Ideally, such a
technique should allow us to (i) distinguish cookies that are used for
tracking purposes from those that are not related to tracking (e.g.,
timestamps), (ii) find the relationship between the domains setting
the cookies and those that receive them, and (iii) categorize the com-
mon usage patterns of external cookies and filter out representative
cases where manual analysis yields the most benefit.

3.2 Dynamic Taint Analysis
Our solution to the above challenges relies on information flow anal-
ysis techniques. Specifically, we leverage and extend Mystique [19],
which implemented dynamic taint tracking for JS by modifying the
Chromium browser’s V8 JS engine and its Blink layout engine. Mys-
tique’s runtime taint propagation covers all JS data types, and it was
originally built to identify browser extensions that leak the user’s
browsing history. We tailoredMystique to our usage scenarios. In
the following, we document all the changes we made and show how
the challenges mentioned in Section 3.1 are addressed.

3.2.1 Defining document.cookie as Taint Source. As discussed, ex-
ternal cookies are set by third-party JS code, that runs in the page,
using the document.cookie property. For our analysis such cookies
need to be distinguished from other first-party cookies (e.g., tradi-
tional first-party cookies, or cookies set by JS code that originates
from the first party), so that we can properly taint and track them
when they are read back (together with other first-party cookies).
Thus, defining document.cookie as taint source needs to account
for both read and write accesses. To that end, wemade the following
changes to Chromium: (i) whenever third-party JS code writes to
document.cookie to either set a new cookie or update an existing
one, we mark that cookie as tainted by recording it in a global table
(keyed on both the cookie name and the domain on which it is set),
and (ii)whendocument.cookie is readwe taint the return value (i.e.,
a string that concatenates all the cookies of thewebsite) if it contains
cookies that we have previously marked as tainted. However, the
value of document.cookie, which concatenates all the cookies of
the website, can potentially contain non-external first-party cookies.

(note that the cookie is set for the first-party domain) and sends
its value back to the third party fromwhich the code originated
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of the output string. For these reasons, a system that aims to under-
stand how external cookies are used needs to be able to gain detailed
insights into the data flows of the JS code running on a page, across
all available data types (and not limited to, e.g., just the string type).

Finally, given that we are interested in a large-scale measurement
of external cookie usage across theweb, and that a significant portion
of JS code is likely to be minified/obfuscated to deter analysis [36],
we need an automated way to analyze the results without resorting
to manual analysis of all the encountered JS code. Ideally, such a
technique should allow us to (i) distinguish cookies that are used for
tracking purposes from those that are not related to tracking (e.g.,
timestamps), (ii) find the relationship between the domains setting
the cookies and those that receive them, and (iii) categorize the com-
mon usage patterns of external cookies and filter out representative
cases where manual analysis yields the most benefit.

3.2 Dynamic Taint Analysis
Our solution to the above challenges relies on information flow anal-
ysis techniques. Specifically, we leverage and extend Mystique [19],
which implemented dynamic taint tracking for JS by modifying the
Chromium browser’s V8 JS engine and its Blink layout engine. Mys-
tique’s runtime taint propagation covers all JS data types, and it was
originally built to identify browser extensions that leak the user’s
browsing history. We tailoredMystique to our usage scenarios. In
the following, we document all the changes we made and show how
the challenges mentioned in Section 3.1 are addressed.

3.2.1 Defining document.cookie as Taint Source. As discussed, ex-
ternal cookies are set by third-party JS code, that runs in the page,
using the document.cookie property. For our analysis such cookies
need to be distinguished from other first-party cookies (e.g., tradi-
tional first-party cookies, or cookies set by JS code that originates
from the first party), so that we can properly taint and track them
when they are read back (together with other first-party cookies).
Thus, defining document.cookie as taint source needs to account
for both read and write accesses. To that end, wemade the following
changes to Chromium: (i) whenever third-party JS code writes to
document.cookie to either set a new cookie or update an existing
one, we mark that cookie as tainted by recording it in a global table
(keyed on both the cookie name and the domain on which it is set),
and (ii)whendocument.cookie is readwe taint the return value (i.e.,
a string that concatenates all the cookies of thewebsite) if it contains
cookies that we have previously marked as tainted. However, the
value of document.cookie, which concatenates all the cookies of
the website, can potentially contain non-external first-party cookies.

,
and then different code that is fetched from another third-party do-
main (script2.js from http://adnetwork.com)
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2.3 Evading Third-Party Cookie Policies
Instead of using traditional third-party cookies, online trackers can
simply have their JavaScript code execute in the first-party context
and use document.cookie to set first-party external cookies. In con-
trast to third-party cookies that can be easily blocked or deleted
without affecting the functionality and usability of the website, this
is not so straightforward in the case of first-party cookies.

In Figure 1 we present the common case of third-party services
that have code running in the first-party website and utilizing exter-
nal cookies. In this case, the third-party code sets an external cookie
3 (note that the cookie is set for the first-party domain) and sends
its value back to the third party fromwhich the code originated 4 .
This trackingmethod,which only allows tracking a user returning to
a previously visited website, is typically employed by web analytics
services, such as Google Analytics.

Although this approach may affect user privacy, as it can track
the visits of a user to the first-party website, and possibly artifacts of
the user’s behavior while navigating the page, it can be considered
as benign, or at least acceptable. However, this is not the case when
the value of an external cookie is derived based on fingerprinting,
when it encodes information that can be used to link the user to a
specific user profile (e.g., the user’s IP address), and when the same
values are being set as both a first-party and a third-party cookie.

The most important and interesting case is when the external
cookie is leaked to a third party that is different from the one that
previously set that cookie. This could be either the result of a co-
operation between the two third-party services, or the result of a
shady third party that uses its own code to read the cookies that
were set by other third parties. As depicted in Figure 2, the code
from http://tracker.com sets an external cookie (tr_uid) 3 ,
and then different code that is fetched from another third-party do-
main (script2.js from http://adnetwork.com) 5 reads all the
first-party cookies of the website 6 , extracts the value of tr_uid,
and sends it to http://adnetwork.com 7 , essentially “stealing”
the external cookie. To make matters worse, it is quite possible to
have a large number of third parties being involved in reading those
external cookies and exchanging identifiers between them.

3 METHODOLOGY
3.1 Challenges inMeasuring External Cookies
There are many technical challenges involved in accurately mea-
suring and understanding the usage of external cookies. First, since
external cookies are not set upon receiving anHTTP responsewith a
Set-Cookie header, but rather by third-party JS code running in the
first-party context, it is not possible to distinguish external cookies
from other first-party cookies simply by observing the network traf-
fic. Thus, the measurement system needs to keep track of the origins
of each JS unit executing on the page, and be able to attribute the
setting of first-party cookies to the initiating script. That is, it needs
to hook the JS interface for updating the cookie storage of a website,
identify the initiator script domain responsible for setting cookies
through this interface and, if the initiator’s domain is different from
the first-party domain, record the cookies being set.

Second, unlike traditional third-party cookies, external cookies
are also not sent back to third parties encoded verbatim in the HTTP
request header, but are instead read back and sent by JS code, which

can potentially apply arbitrary transformations (e.g., encryption
or hashing) before sending them. Therefore, the JS cookie storage
interface also needs to be hooked for read accesses. Considering that
the read-back values from this interface might contain both external
cookies and non-external ones (i.e., first-party cookies not set by
third-party JS code), the measurement system needs a way to attach
this information to the read-back values and track any values derived
from external cookies. Furthermore, the transformations applied by
JS code to external cookies are not necessarily limited to using the
string type: for instance, an implementation of the base64 encod-
ing would first convert the characters of the input string to integers,
which are then used as indexes in a table that produces the characters
of the output string. For these reasons, a system that aims to under-
stand how external cookies are used needs to be able to gain detailed
insights into the data flows of the JS code running on a page, across
all available data types (and not limited to, e.g., just the string type).

Finally, given that we are interested in a large-scale measurement
of external cookie usage across theweb, and that a significant portion
of JS code is likely to be minified/obfuscated to deter analysis [36],
we need an automated way to analyze the results without resorting
to manual analysis of all the encountered JS code. Ideally, such a
technique should allow us to (i) distinguish cookies that are used for
tracking purposes from those that are not related to tracking (e.g.,
timestamps), (ii) find the relationship between the domains setting
the cookies and those that receive them, and (iii) categorize the com-
mon usage patterns of external cookies and filter out representative
cases where manual analysis yields the most benefit.

3.2 Dynamic Taint Analysis
Our solution to the above challenges relies on information flow anal-
ysis techniques. Specifically, we leverage and extend Mystique [19],
which implemented dynamic taint tracking for JS by modifying the
Chromium browser’s V8 JS engine and its Blink layout engine. Mys-
tique’s runtime taint propagation covers all JS data types, and it was
originally built to identify browser extensions that leak the user’s
browsing history. We tailoredMystique to our usage scenarios. In
the following, we document all the changes we made and show how
the challenges mentioned in Section 3.1 are addressed.

3.2.1 Defining document.cookie as Taint Source. As discussed, ex-
ternal cookies are set by third-party JS code, that runs in the page,
using the document.cookie property. For our analysis such cookies
need to be distinguished from other first-party cookies (e.g., tradi-
tional first-party cookies, or cookies set by JS code that originates
from the first party), so that we can properly taint and track them
when they are read back (together with other first-party cookies).
Thus, defining document.cookie as taint source needs to account
for both read and write accesses. To that end, wemade the following
changes to Chromium: (i) whenever third-party JS code writes to
document.cookie to either set a new cookie or update an existing
one, we mark that cookie as tainted by recording it in a global table
(keyed on both the cookie name and the domain on which it is set),
and (ii)whendocument.cookie is readwe taint the return value (i.e.,
a string that concatenates all the cookies of thewebsite) if it contains
cookies that we have previously marked as tainted. However, the
value of document.cookie, which concatenates all the cookies of
the website, can potentially contain non-external first-party cookies.

reads all the
first-party cookies of the website
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2.3 Evading Third-Party Cookie Policies
Instead of using traditional third-party cookies, online trackers can
simply have their JavaScript code execute in the first-party context
and use document.cookie to set first-party external cookies. In con-
trast to third-party cookies that can be easily blocked or deleted
without affecting the functionality and usability of the website, this
is not so straightforward in the case of first-party cookies.

In Figure 1 we present the common case of third-party services
that have code running in the first-party website and utilizing exter-
nal cookies. In this case, the third-party code sets an external cookie
3 (note that the cookie is set for the first-party domain) and sends
its value back to the third party fromwhich the code originated 4 .
This trackingmethod,which only allows tracking a user returning to
a previously visited website, is typically employed by web analytics
services, such as Google Analytics.

Although this approach may affect user privacy, as it can track
the visits of a user to the first-party website, and possibly artifacts of
the user’s behavior while navigating the page, it can be considered
as benign, or at least acceptable. However, this is not the case when
the value of an external cookie is derived based on fingerprinting,
when it encodes information that can be used to link the user to a
specific user profile (e.g., the user’s IP address), and when the same
values are being set as both a first-party and a third-party cookie.

The most important and interesting case is when the external
cookie is leaked to a third party that is different from the one that
previously set that cookie. This could be either the result of a co-
operation between the two third-party services, or the result of a
shady third party that uses its own code to read the cookies that
were set by other third parties. As depicted in Figure 2, the code
from http://tracker.com sets an external cookie (tr_uid) 3 ,
and then different code that is fetched from another third-party do-
main (script2.js from http://adnetwork.com) 5 reads all the
first-party cookies of the website 6 , extracts the value of tr_uid,
and sends it to http://adnetwork.com 7 , essentially “stealing”
the external cookie. To make matters worse, it is quite possible to
have a large number of third parties being involved in reading those
external cookies and exchanging identifiers between them.

3 METHODOLOGY
3.1 Challenges inMeasuring External Cookies
There are many technical challenges involved in accurately mea-
suring and understanding the usage of external cookies. First, since
external cookies are not set upon receiving anHTTP responsewith a
Set-Cookie header, but rather by third-party JS code running in the
first-party context, it is not possible to distinguish external cookies
from other first-party cookies simply by observing the network traf-
fic. Thus, the measurement system needs to keep track of the origins
of each JS unit executing on the page, and be able to attribute the
setting of first-party cookies to the initiating script. That is, it needs
to hook the JS interface for updating the cookie storage of a website,
identify the initiator script domain responsible for setting cookies
through this interface and, if the initiator’s domain is different from
the first-party domain, record the cookies being set.

Second, unlike traditional third-party cookies, external cookies
are also not sent back to third parties encoded verbatim in the HTTP
request header, but are instead read back and sent by JS code, which

can potentially apply arbitrary transformations (e.g., encryption
or hashing) before sending them. Therefore, the JS cookie storage
interface also needs to be hooked for read accesses. Considering that
the read-back values from this interface might contain both external
cookies and non-external ones (i.e., first-party cookies not set by
third-party JS code), the measurement system needs a way to attach
this information to the read-back values and track any values derived
from external cookies. Furthermore, the transformations applied by
JS code to external cookies are not necessarily limited to using the
string type: for instance, an implementation of the base64 encod-
ing would first convert the characters of the input string to integers,
which are then used as indexes in a table that produces the characters
of the output string. For these reasons, a system that aims to under-
stand how external cookies are used needs to be able to gain detailed
insights into the data flows of the JS code running on a page, across
all available data types (and not limited to, e.g., just the string type).

Finally, given that we are interested in a large-scale measurement
of external cookie usage across theweb, and that a significant portion
of JS code is likely to be minified/obfuscated to deter analysis [36],
we need an automated way to analyze the results without resorting
to manual analysis of all the encountered JS code. Ideally, such a
technique should allow us to (i) distinguish cookies that are used for
tracking purposes from those that are not related to tracking (e.g.,
timestamps), (ii) find the relationship between the domains setting
the cookies and those that receive them, and (iii) categorize the com-
mon usage patterns of external cookies and filter out representative
cases where manual analysis yields the most benefit.

3.2 Dynamic Taint Analysis
Our solution to the above challenges relies on information flow anal-
ysis techniques. Specifically, we leverage and extend Mystique [19],
which implemented dynamic taint tracking for JS by modifying the
Chromium browser’s V8 JS engine and its Blink layout engine. Mys-
tique’s runtime taint propagation covers all JS data types, and it was
originally built to identify browser extensions that leak the user’s
browsing history. We tailoredMystique to our usage scenarios. In
the following, we document all the changes we made and show how
the challenges mentioned in Section 3.1 are addressed.

3.2.1 Defining document.cookie as Taint Source. As discussed, ex-
ternal cookies are set by third-party JS code, that runs in the page,
using the document.cookie property. For our analysis such cookies
need to be distinguished from other first-party cookies (e.g., tradi-
tional first-party cookies, or cookies set by JS code that originates
from the first party), so that we can properly taint and track them
when they are read back (together with other first-party cookies).
Thus, defining document.cookie as taint source needs to account
for both read and write accesses. To that end, wemade the following
changes to Chromium: (i) whenever third-party JS code writes to
document.cookie to either set a new cookie or update an existing
one, we mark that cookie as tainted by recording it in a global table
(keyed on both the cookie name and the domain on which it is set),
and (ii)whendocument.cookie is readwe taint the return value (i.e.,
a string that concatenates all the cookies of thewebsite) if it contains
cookies that we have previously marked as tainted. However, the
value of document.cookie, which concatenates all the cookies of
the website, can potentially contain non-external first-party cookies.

, extracts the value of tr_uid,
and sends it to http://adnetwork.com
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Instead of using traditional third-party cookies, online trackers can
simply have their JavaScript code execute in the first-party context
and use document.cookie to set first-party external cookies. In con-
trast to third-party cookies that can be easily blocked or deleted
without affecting the functionality and usability of the website, this
is not so straightforward in the case of first-party cookies.

In Figure 1 we present the common case of third-party services
that have code running in the first-party website and utilizing exter-
nal cookies. In this case, the third-party code sets an external cookie
3 (note that the cookie is set for the first-party domain) and sends
its value back to the third party fromwhich the code originated 4 .
This trackingmethod,which only allows tracking a user returning to
a previously visited website, is typically employed by web analytics
services, such as Google Analytics.

Although this approach may affect user privacy, as it can track
the visits of a user to the first-party website, and possibly artifacts of
the user’s behavior while navigating the page, it can be considered
as benign, or at least acceptable. However, this is not the case when
the value of an external cookie is derived based on fingerprinting,
when it encodes information that can be used to link the user to a
specific user profile (e.g., the user’s IP address), and when the same
values are being set as both a first-party and a third-party cookie.

The most important and interesting case is when the external
cookie is leaked to a third party that is different from the one that
previously set that cookie. This could be either the result of a co-
operation between the two third-party services, or the result of a
shady third party that uses its own code to read the cookies that
were set by other third parties. As depicted in Figure 2, the code
from http://tracker.com sets an external cookie (tr_uid) 3 ,
and then different code that is fetched from another third-party do-
main (script2.js from http://adnetwork.com) 5 reads all the
first-party cookies of the website 6 , extracts the value of tr_uid,
and sends it to http://adnetwork.com 7 , essentially “stealing”
the external cookie. To make matters worse, it is quite possible to
have a large number of third parties being involved in reading those
external cookies and exchanging identifiers between them.

3 METHODOLOGY
3.1 Challenges inMeasuring External Cookies
There are many technical challenges involved in accurately mea-
suring and understanding the usage of external cookies. First, since
external cookies are not set upon receiving anHTTP responsewith a
Set-Cookie header, but rather by third-party JS code running in the
first-party context, it is not possible to distinguish external cookies
from other first-party cookies simply by observing the network traf-
fic. Thus, the measurement system needs to keep track of the origins
of each JS unit executing on the page, and be able to attribute the
setting of first-party cookies to the initiating script. That is, it needs
to hook the JS interface for updating the cookie storage of a website,
identify the initiator script domain responsible for setting cookies
through this interface and, if the initiator’s domain is different from
the first-party domain, record the cookies being set.

Second, unlike traditional third-party cookies, external cookies
are also not sent back to third parties encoded verbatim in the HTTP
request header, but are instead read back and sent by JS code, which

can potentially apply arbitrary transformations (e.g., encryption
or hashing) before sending them. Therefore, the JS cookie storage
interface also needs to be hooked for read accesses. Considering that
the read-back values from this interface might contain both external
cookies and non-external ones (i.e., first-party cookies not set by
third-party JS code), the measurement system needs a way to attach
this information to the read-back values and track any values derived
from external cookies. Furthermore, the transformations applied by
JS code to external cookies are not necessarily limited to using the
string type: for instance, an implementation of the base64 encod-
ing would first convert the characters of the input string to integers,
which are then used as indexes in a table that produces the characters
of the output string. For these reasons, a system that aims to under-
stand how external cookies are used needs to be able to gain detailed
insights into the data flows of the JS code running on a page, across
all available data types (and not limited to, e.g., just the string type).

Finally, given that we are interested in a large-scale measurement
of external cookie usage across theweb, and that a significant portion
of JS code is likely to be minified/obfuscated to deter analysis [36],
we need an automated way to analyze the results without resorting
to manual analysis of all the encountered JS code. Ideally, such a
technique should allow us to (i) distinguish cookies that are used for
tracking purposes from those that are not related to tracking (e.g.,
timestamps), (ii) find the relationship between the domains setting
the cookies and those that receive them, and (iii) categorize the com-
mon usage patterns of external cookies and filter out representative
cases where manual analysis yields the most benefit.

3.2 Dynamic Taint Analysis
Our solution to the above challenges relies on information flow anal-
ysis techniques. Specifically, we leverage and extend Mystique [19],
which implemented dynamic taint tracking for JS by modifying the
Chromium browser’s V8 JS engine and its Blink layout engine. Mys-
tique’s runtime taint propagation covers all JS data types, and it was
originally built to identify browser extensions that leak the user’s
browsing history. We tailoredMystique to our usage scenarios. In
the following, we document all the changes we made and show how
the challenges mentioned in Section 3.1 are addressed.

3.2.1 Defining document.cookie as Taint Source. As discussed, ex-
ternal cookies are set by third-party JS code, that runs in the page,
using the document.cookie property. For our analysis such cookies
need to be distinguished from other first-party cookies (e.g., tradi-
tional first-party cookies, or cookies set by JS code that originates
from the first party), so that we can properly taint and track them
when they are read back (together with other first-party cookies).
Thus, defining document.cookie as taint source needs to account
for both read and write accesses. To that end, wemade the following
changes to Chromium: (i) whenever third-party JS code writes to
document.cookie to either set a new cookie or update an existing
one, we mark that cookie as tainted by recording it in a global table
(keyed on both the cookie name and the domain on which it is set),
and (ii)whendocument.cookie is readwe taint the return value (i.e.,
a string that concatenates all the cookies of thewebsite) if it contains
cookies that we have previously marked as tainted. However, the
value of document.cookie, which concatenates all the cookies of
the website, can potentially contain non-external first-party cookies.
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external cookies are not set upon receiving anHTTP responsewith a
Set-Cookie header, but rather by third-party JS code running in the
first-party context, it is not possible to distinguish external cookies
from other first-party cookies simply by observing the network traf-
fic. Thus, the measurement system needs to keep track of the origins
of each JS unit executing on the page, and be able to attribute the
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identify the initiator script domain responsible for setting cookies
through this interface and, if the initiator’s domain is different from
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are also not sent back to third parties encoded verbatim in the HTTP
request header, but are instead read back and sent by JS code, which
can potentially apply arbitrary transformations (e.g., encryption

or hashing) before sending them. Therefore, the JS cookie storage
interface also needs to be hooked for read accesses. Considering that
the read-back values from this interface might contain both external
cookies and non-external ones (i.e., first-party cookies not set by
third-party JS code), the measurement system needs a way to attach
this information to the read-back values and track any values derived
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JS code to external cookies are not necessarily limited to using the
string type: for instance, an implementation of the base64 encod-
ing would first convert the characters of the input string to integers,
which are then used as indexes in a table that produces the characters
of the output string. For these reasons, a system that aims to under-
stand how external cookies are used needs to be able to gain detailed
insights into the data flows of the JS code running on a page, across
all available data types (and not limited to, e.g., just the string type).

Finally, given that we are interested in a large-scale measurement
of external cookie usage across theweb, and that a significant portion
of JS code is likely to be minified/obfuscated to deter analysis [36],
we need an automated way to analyze the results without resorting
to manual analysis of all the encountered JS code. Ideally, such a
technique should allow us to (i) distinguish cookies that are used for
tracking purposes from those that are not related to tracking (e.g.,
timestamps), (ii) find the relationship between the domains setting
the cookies and those that receive them, and (iii) categorize the com-
mon usage patterns of external cookies and filter out representative
cases where manual analysis yields the most benefit.

3.2 Dynamic Taint Analysis
Our solution to the above challenges relies on information flow anal-
ysis techniques. Specifically, we leverage and extend Mystique [19],
which implemented dynamic taint tracking for JS by modifying the
Chromium browser’s V8 JS engine and its Blink layout engine. Mys-
tique’s runtime taint propagation covers all JS data types, and it was
originally built to identify browser extensions that leak the user’s
browsing history. We tailoredMystique to our usage scenarios. In
the following, we document all the changes we made and show how
the challenges mentioned in Section 3.1 are addressed.

3.2.1 Defining document.cookie as Taint Source. As discussed, ex-
ternal cookies are set by third-party JS code, that runs in the page,
using the document.cookie property. For our analysis such cookies
need to be distinguished from other first-party cookies (e.g., tradi-
tional first-party cookies, or cookies set by JS code that originates
from the first party), so that we can properly taint and track them
when they are read back (together with other first-party cookies).
Thus, defining document.cookie as taint source needs to account
for both read and write accesses. To that end, wemade the following
changes to Chromium: (i) whenever third-party JS code writes to
document.cookie to either set a new cookie or update an existing
one, we mark that cookie as tainted by recording it in a global table
(keyed on both the cookie name and the domain on which it is set),
and (ii)whendocument.cookie is readwe taint the return value (i.e.,
a string that concatenates all the cookies of thewebsite) if it contains
cookies that we have previously marked as tainted. However, the
value of document.cookie, which concatenates all the cookies of
the website, can potentially contain non-external first-party cookies.
To avoid over-tainting those cookies, we extendMystique’s dynamic
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taint tracking implementation with precise byte-level taint tracking
for the string type, which we discuss in the following section.

Incidentally, we consider scripts to be third-party when they orig-
inate from an eTLD+1 domain that is different from the first-party
origin. We taint a cookie that is set via document.cookie when
the initiator script is third-party. The eTLD+1 domain fromwhich
the initiator script is loaded is considered as the source domain of
the cookie (we will use this definition in Section 4). The initiator
script can be found from Chromium’s call stack at the point when
document.cookie is written to. We attribute the initiator script to
be the bottom script on the call stack. Note that this attribution
works even in the presence of asynchronously invoked JS code, since
Chromium’s call stack is able to trace across asynchronous func-
tions [13]. For instance, if a script registered a callback which is later
invoked asynchronously, the call stack will contain information
about the original script responsible for registering the callback.

3.2.2 Byte-Level Taint Tracking for Strings. We implement byte-
level taint tracking for strings bymodifyingV8 to associate aBoolean
array with each string that is partially tainted: if byte i in the string
is tainted, then offset i of the Boolean array would be set to true,
otherwise false. Note that if a string is fully tainted, then it is not
necessary to allocate a Boolean array for it - we treat tainted strings
that do not have an associated Boolean array as fully tainted.

To keep this byte-level taint information up-to-date, we propa-
gate the taint across string manipulation functions such as concat
and split, as well as regular expression operations. This taint prop-
agation is similar to Lekies et al. [27]. Our work, however, differs
from theirs in the following ways: (i) Lekies et al. [27] only handled
tainting for the string type, which is not adequate for measuring ex-
ternal cookies. Aswementioned, our approach requires tracking the
complete data flow, across all JS data types, a capability we leverage
fromMystique, and (ii) unlike Lekies et al. [27], precise byte-level
taint propagation is not always possible with the approach taken by
Mystique, onwhich ourwork is based (e.g., when taint is propagated
across control-flow dependencies; see [19] for details).

3.2.3 Taint Sinks. To detect tainted values (i.e., information derived
fromexternal cookies) that are transmitted to third parties,we define
the (i) XMLHttpRequest, (ii) WebSocket, and (iii) src attributes of
HTML elements as taint sinks. Our system raises an alertwhenever a
tainted value reaches one of the sinks, for being sent to the network.
Note that our approach considers all HTML elements that have a
src attribute as taint sinks, as the browser would make a network
request to fetch the resource pointed to by the src attribute. Since
this results in a network request, affecting the src attribute of ele-
ments is a potential way for passing information to the third parties
that provide the referenced resources.

3.2.4 Discussion. Themodificationswemade toChromiumaddress
the first two challenges mentioned in Section 3.1. Specifically, as
stated in Section 2, to the best of our knowledge, the DOM property
document.cookie is the only interface that JavaScript has to the
cookies of a website. Therefore, any external cookies that are set
for a website will be detected by our modified Chromium browser;
when these cookies are read back by JS code, they will be tainted by
our instrumentation. Dynamic taint tracking then ensures that taint
data is propagated as the JS code executes: any data that is derived

from tainted values (e.g., base64-encoded) will also be tainted. Given
this, we are able to track how external cookies are used by JS, and
whether they are leaked over the network (i.e., whether the taint
sinks are triggered by tainted values) back to third parties. Note that
HTTP requestsmade to third-party domains donot have the external
cookies embedded in the request header, as external cookies are set
for the first-party domain. Thus, the only way for third parties to
read back the external cookies is through JS that runs in the page,
which ultimately needs to read them from document.cookie.

3.3 Detecting Tracking Cookies
Not all external cookies are used forweb tracking. For example, some
cookies may store a true/false flag to indicate whether a user has
opted in to certain features of the website. Other examples include
the client’s language, geolocation, timezone, and timestamps. These
values contain only coarse-grained information and as such they
cannot uniquely identify a particular user. Note that in the case of
timestamps, they are often paired with an additional random num-
ber to avoid collision and form a unique tracking ID (e.g., Google
Analytics’ _ga cookie [17]), but by themselves they are not uniquely
identifying. This classification is in line with previous works [22].

To explore how external cookies are used for web tracking, we
need to focus only on cookies that contain tracking IDs. To that end,
we follow the methodology used in previous works [21, 22]. The key
insight here is that tracking cookies have two important properties:
(i) persistent value over time, and (ii) uniqueness across different
browser instances. However, as the authors themselves noted in
thoseworks, their methods are intentionally conservative since they
were interested in establishing lower bounds. Also, their methods
are not specific to external cookies. Thus, we adapted their methods
to effectively detect tracking IDs in external cookies. Specifically, we
filter the external cookies recorded by our instrumented Chromium
(see Section 3.2) according to the following criteria:

(i) The cookie should not be a session cookie, (session cookies
are deleted by the browser when the session ends [16]).

(ii) The length of the cookie’s unquoted value is at least 8 char-
acters (unquote converts URL-encoded %xx sequences into
their single character equivalents).

(iii) The cookie is always set when visiting the website using
different browser instances.

(iv) The values of a cookie differ significantly across different
visits to the same website using different browser instances.

Similarly to previous works, we define a “significant difference”
in cookie values using the Ratcliff-Obershelp algorithm to compute
similarity scores. Note that the above criteria are essentially the
same ones used in previous works [21, 22]. Our methodology dif-
fers primarily in how similarity scores are computed. In [21, 22]
the similarity scores are computed over the entire cookie values.
However, we have frequently observed external cookie values such
as “{visitor_id: abcd, timestamp: 1234},” where the common
parts skew the similarity scores. In such cases, only the similarity
between the actual visitor ID value is of interest. For this reason, we
compute the similarity scores only after we have removed all the
common parts between the cookie values. Specifically, we do so by
first removing all timestamps from the cookie values, and then all
common subsequences having a length of more than 2. The latter is
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done by applying the longest common subsequence (LCS) algorithm
and removing the LCS from both values, and repeating until the LCS
length is less than or equal to 2. The similarity score of the residual
values are then computed using Ratcliff-Obershelp, and we set a
cutoff value of 66% (i.e., the original cookie values are significantly
different when this score is below the cutoff). The same cutoff value
of 66% was also chosen in Englehardt et al. [21].

3.4 Heuristic-Based IdentifierMatching
Having identified external cookies that contain tracking IDs, we are
then interested in measuring (i) which of these tracking cookies are
later read back by third-party JS and leaked over the network, and
(ii) the relationship among the entity (i.e., TLD+1 domain) that orig-
inally set the cookie, the entity that triggered the reading back and
leaking of this cookie, and the entity that receives the leaked cookie.
However, one technical challenge here is that since Mystique [19],
on which we base our dynamic taint tracking implementation, only
tracks the binary status (i.e., tainted or not) of JS values, it does
not provide information at taint sinks about the provenance of the
tainted values (i.e., the tracking cookies fromwhich the tainted val-
ues triggering the sinks are derived). Thus, we need an orthogonal
method to automatically extract this information. In order to address
this challenge, we design and apply a set of heuristics that attempt
to match the tainted values that triggered a taint sink against the
identified tracking cookies. For convenience, we hereafter refer to
these values (i.e., values that triggered a taint sink) as sink objects.

It should be noted that these heuristics are complementary to
our taint tracking mechanism: they allow us to (i) verify the results
of taint tracking by confirming that indeed the cases of triggered
sink objects correspond to true positives, and (ii) filter out cases of
information flows that do not include unique identifiers and thus do
not affect the user’s privacy (as we mentioned in Section 3.3, some
tracking cookies contain both unique tracking ID and non-unique
parts). If we did not have the taint trackingmechanism, andwe relied
solely on heuristics for matching the cookies against the network
traffic, then (i) we would not have any information about which
third-party scripts set each external cookie (nor whether the exter-
nal cookies contain tracking IDs), and which read and diffuse these
cookies over the network; indeed, it is not even possible to know
which of the first party cookies are external cookies, and (ii) we
might miss cases where the leaked information is transformed (i.e,
encrypted or obfuscated) before being sent.

The first and simplest heuristic tries to match the name or value
of a tainted cookie with a substring in the sink object. In the case
where the sink object is a URL, we extract the URL parameters (e.g.,
the argument passed to XMLHttpRequest’s openmethod), and check
whether the name or value of a tainted cookie matches the extracted
URL parameters. In the great majority of cases, this heuristic was
able to match the entire name or value of the tainted cookie against
the sink object. However, therewere also some caseswhere the name
or value of the cookie did not match a substring of the tainted sink
object, but it was evident that either the name or the value of the
cookie was generated by the concatenation of two or more string
literals (e.g., value1.value2, value1_value2). To also account for
such cases, we apply a slightly more complex heuristic that splits

the cookie value to substrings, based on a set of special characters,
and attempts to match these substrings with parts of the sink object.

Finally, we apply a heuristic that tries to detect cases that involve
transformed values. This heuristic, similarly to the previous one,
splits the tainted cookie values into substrings and then applies
the base64 encoding, and the MD5, SHA1, and SHA256 hashing
algorithms both to the entire cookie value and the substrings, and
attempts to match themwith parts of the triggered tainted sink ob-
ject. While this heuristic is more complex than the previous ones, it
allows us to verify cases that we cannot verify manually, where the
tainted information is transformed before reaching the sink object.
We present in Section 4 the results of applying our heuristics to the
data gathered from crawling the Alexa top 10K websites.

3.5 Experimental Setup
Wemeasure the prevalence of external cookie usage by crawling the
Alexa top 10K websites with our instrumented Chromium browser.
Each instance of Chromium runs in a separate Docker [5] container.
After each website has finished loading, we wait for an additional
two minutes, to allow sufficient time for the JavaScript code on the
page to execute. This process is then repeated twomore times inside
the sameChromium instance, since external cookies are typically set
on the first visit and are read back and sent only on subsequent visits.
Note that depending on the purpose of the analysis, we either launch
a fresh instance of Chromium (i.e., no prior state) for each one of the
websites we analyze, or a fresh instance per cluster of websites (e.g.,
websites that have external cookies with the same name) and visit
each website of a cluster in the same Chromium instance one by one.
We will provide more details about this type of analysis in Section 4.

Finally, we parallelize the analysis by running the Dockerized
instances of the Chromiumbrowser on a local Kubernetes cluster [6].
The analysis tasks (e.g., the URLs to visit) are distributed to work-
ers via Redis [7]. We note that since the tracking cookie detection
algorithm described in Section 3.3 requires two separate browser
instances visiting the same website at about the same time, we en-
queue each website twice consecutively to Redis, so that they are
picked up, one immediately after the other, by the workers in the
Kubernetes cluster. Since each website is visited by two separate
browser instances, essentially this means that there are two separate
crawls of the Alexa top 10K. Hereafter we refer to these two separate
crawls as themain crawl and the control crawl, and we treat the web-
site visit that results from the first time it is enqueued as belonging
to the main crawl (and thus the visit from the second enqueue as the
control crawl).

4 TAINTANALYSIS RESULTS
In this section, we report the results of our analysis on the Alexa
top 10K websites. We begin by describing the raw data from our
crawl and giving an overview on the number of external cookies that
we encountered. This is followed by a taxonomy breakdown of the
recorded external cookies, based on the output of our algorithm for
the detection of tracking cookies that is described in Section 3.3. We
then present the results of our heuristics (Section 3.4) and explore in
detail the relationship between the source domains (i.e., entities that
originally set external cookies) and the sink domains (i.e., entities
that receive information derived from confirmed tracking cookies).
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4.1 Overview of the Initial Crawl
In total, we recorded external cookies being set in 9,772 (97.72%)
out of the Alexa top 10K websites that we crawled. Table 1 gives an
overview on the number of external cookies that were recorded in
our crawl. Recall from Section 3.5 that in our experimental setup we
essentially have two simultaneous crawls, and we refer to them as
themain and the control crawl, respectively. We show in Table 1 the
statistics for both crawls. We note that in both crawls each website
is visited by a fresh instance of Chromium.

Togiveamorecomprehensivepicture regarding theexternal cook-
ies on the Alexa top 10K websites, we count the number of external
cookies using a variety of different criteria. In Table 1 we present
both the number of unique cookies and the number of instances of
such cookies (i.e., the total number of times those unique cookies
were set/updated via document.cookie), according to different cri-
teria. For example, if we define unique cookies based on the tuple
<cookie_domain, js_domain, cookie_name>, where js_domain
denotes the third-party domain serving the JavaScript code that sets
the cookie, then in ourmain crawlwe observed 100,146 unique exter-
nal cookies, and our Chromium instrumentation recorded that these
cookies were updated (via document.cookie) for a total of 185,910
times. From the numbers in Table 1 one can make a few observa-
tions: since the number of unique cookies according to <js_domain,
cookie_name> ismuch lower than those basedon<cookie_domain,
cookie_name>, it follows that some third-party domains are respon-
sible for serving scripts that set external cookies in a large number
of websites. Another similar example is the criterion <js_domain,
cookie_name> vs. <cookie_name>, which indicates either cookie
name conflicts, or that the same cookie-setting script is hosted on
multiple domains (e.g., to avoid filter list blocking [20]).

In Table 1 we also show the subset of cookies in each category
that correspond to non-session cookies (i.e., numbers in parenthe-
ses). These numbers are provided to give a sense of the input to
our tracking ID detection algorithm described in Section 3.3, the re-
sults of which we discuss next. Unless otherwise specified, hereafter
we count unique external cookies based on the tuple <js_domain,
cookie_name>, since it is themost appropriategiven the scopeof this
paper, and allows us to easily cluster different first-party websites
based on the external cookies that are set on them.

4.2 Taxonomy of Non-Session External Cookies
Next, we present the results of our tracking ID detection algorithm,
that we described in Section 3.3. Recall that the algorithm looks for
tracking IDs in non-session cookies, and as shown in Table 1, in the
main crawl there are 13,323 non-session cookies (by <js_domain,
cookie_name>). Note that since session cookies are deleted when
the current session ends [16], by themselves they are not suitable
for persistent tracking purposes. Therefore, in the rest of this paper
we primarily focus on non-session cookies.

Table 2 presents a taxonomy of the non-session cookies collected
from our main crawl. The taxonomy categories are based on the
various conditions that need to be satisfied in order for a cookie to
be considered by our algorithm as a tracking cookie. We give the
details of each category below.

4.2.1 Tracking ID. This category includes the non-session exter-
nal cookies that our algorithm identifies as tracking cookies. Out

of the 13,323 unique non-session external cookies, we found 4,212
(31.61%) that contain tracking IDs.Weextracted theURLs serving the
scripts that set these cookies and cross-referenced them against the
crowd-sourcedfilter list EasyList/EasyPrivacy (onwhich the popular
Adblock Plus [10] extension is based). Alarmingly, we found that
1,673 (nearly 40% of UID-containing cookies) would have evaded fil-
ter list blocking.Wewill presentmore details about these tracking ID
cookies in Section 4.3, where we explore (i) the relationship between
domains serving the scripts that initially set those cookies (i.e., source
domains), and domains serving scripts which later read back these
cookies and send them over the network (i.e., retriever domains), and
(ii) the top 10 source domains, which set themost unique tracking ID
cookies, and the top 10 sink domains that received the most unique
tracking ID cookies. Note that for a cookie that is read back and
sent over the network, the retriever domain does not necessarily
need to be the same as the sink domain. For example, a third-party
script might collect all external cookies set by other well-known
trackers (e.g., Google Analytics) and send this information back to
their servers, a commonly encountered scenario which we discuss
in Section 4.3. In that section we will also give sample values of the
top 10 tracking ID cookies of this category that are set on the most
websites in our crawl of the Alexa top 10K, shown in Table 3.

The rest of the categories in this taxonomy of the non-session
cookies are regarded by our algorithm as not containing tracking
IDs, so they are not likely to be used for persistent tracking of users.
For completeness, we describe each category, with the purpose of
giving a sense of what the values of these cookies contain, as well
as showing which of the filtering conditions in our tracking ID de-
tection algorithm they failed to satisfy. We provide sample values
of cookies in each category as appropriate.

4.2.2 Similar Value. One of the more interesting categories in our
taxonomy is the category of cookies that otherwise passed all the
conditions of the tracking ID detection algorithm (i.e., they are non-
session cookies, having minimum unquoted value length, and non-
constant values between visits by different browser instances), ex-
cept their values do not differ significantly in the two crawls. That
is, the Ratcliff-Obershelp similarity score of their values between
the two separate crawls are above our cutoff of 66%, after all the
timestamps and common parts are removed. As mentioned in Sec-
tion 3.3, timestamps by themselves are not uniquely identifying.
We implemented our tracking ID detection algorithm so that for a
given cookie under consideration, it keeps track of whether times-
tamps are removed from its value as part of the detection process.
In total, all but one cookie in this category have their values differ
between the two crawls due to having different timestamps. Exam-
ples of this category of cookies include _ym_d set by scripts from
yandex.ru (e.g., on academic.ru) whose value is composed entirely
of a timestamp; another example is smct_last_ov by smct.io (set on
e.g., theclutcher.com), with a value that is a serialized JSON object,
e.g., [{"id":35060, "loaded":1594819221556, "open":null,
"eng":null, "closed": null}]. The latter example highlights
the importance of removing both the timestamp and common parts
from the cookie value, in the way that our algorithm does, prior to
computing the similarity score, since the properties in a serialized
JSON object are not guaranteed to have the same order [14].
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Uniqueness Criterion (Tuple) Main Crawl Control Crawl
# Instance # Unique # Instance # Unique

<cookie_domain, js_domain, cookie_name> 185,910 (112,185) 100,146 (65,871) 184,619 (111,108) 99,725 (65,273)
<cookie_domain, cookie_name> 184,714 (112,024) 98,746 (65,250) 183,454 (110,944) 98,335 (64,648)
<js_domain, cookie_name> 138,565 (93,300) 26,632 (13,323) 138,026 (92,380) 26,560 (12,906)
<cookie_name> 136,585 (92,660) 23,909 (11,876) 136,093 (91,776) 23,869 (11,543)

Table 1: Statistics on the number of external cookies, both in the main crawl and the control crawl of the Alexa top 10K. The
numbers in parentheses indicate the subset in the same category that are non-session cookies.

Category #Instance (% Total) # Unique (% Total)

Tracking ID 76,617 (82.12%) 4,212 (31.61%)
Similar Value 6,500 (6.97%) 1,451 (10.89%)
Constant Value 2,245 (2.41%) 1,078 (8.09%)
Short Value 6,838 (7.33%) 5,690 (42.71%)
No Control Value 1,100 (1.18%) 892 (6.70%)
Total 93,300 (100.00%) 13,323 (100.00%)

Table 2: Taxonomyof non-session external cookies collected
from themain crawl.

Incidentally, the single cookie in this category whose value dif-
ference between the crawls is not due to timestamps is ckBAHAADS,
that is set by bahamut.com.tw on the website gamer.com.tw, and its
values are {"FA": {"a3": 9, "a1": 1}} and {"FA": {"a3": 11,
"a1": 0}} in the main and control crawl, respectively.

4.2.3 Constant Value. This category includes the non-session ex-
ternal cookies that are set both in themain and the control crawl, but
their values are always the same, despite the fact that the websites
were visited by different browser instances, and thus are not unique
per user. Many of these cookies would have fallen under the “Short
Value” category if we used a larger cutoff for the minimum value
length (e.g., the JavaScript literal undefined).We also observemany
cookies that contain information specific to the visited website, e.g.,
the website’s domain name.

In addition, we also see a few cases where the cookie values re-
semble a user ID, for instance the ucfunnel_uid1 cookie, set by
aralego.net, when visiting pcstore.com.tw. Since all of our browser
instances in the crawl run from the same configuration, this might
indicate the use of fingerprinting. Indeed, one limitation of our track-
ing ID detection algorithm is that it is unable to find cases where
the cookie values are always the same due to them being generated
from fingerprinting the browser. In Section 4.4, we explore more
systematically howmany such cases there are in the external cookies
collected from crawling the Alexa top 10K.

Nevertheless, herewe attempt a first approximation to addressing
the above limitation, by cross-referencing with the popular Discon-
nect list [15], which is used by Firefox’s Enhanced Tracking Pro-
tection to block known fingerprinters. Overall, we found 8 unique
cookies from this taxonomy category that are set by known finger-
printers, according to Disconnect. However, we manually verified
that almost none of these 8 cookies contain unique user IDs, except

1Having values of the form 88d501e0-40f3-3fcf-bf48-c8fa59bc7efd.

one that appears to be a long UID-containing string.2 Note that the
ucfunnel_uid cookie, mentioned above, was not among the 8 iden-
tified by Disconnect. On the other hand, as a reference we remark
that Disconnect identified 36 from the “Tracking ID” category as
being set by known fingerprinters (more precisely, by scripts served
from known fingerprinter domains).

4.2.4 ShortValueandNoControlValue. Cookies in the “ShortValue”
category are only setwith values that fail tomeet theminimumvalue
length requirement of our tracking ID detection algorithm (i.e., their
unquoted value length is less than 8). Example values for cookies
frequently found in this category include boolean flags (e.g., 0, 1,
true and false), JavaScript literals such as null, as well as short
strings such as “en-US”, “enabled”, etc. In this paper, as in previous
works [21, 22], we do not consider these to be UID-containing.

Finally, the “No Control Value” category contains cookies that
wereobserved in themain crawl, butwerenot set in the control crawl.
These cookies comprise 6.70% (totaling 892) of all the non-session
external cookies in the main crawl. We do not consider such cookies
to be stable enough to reliably track visitors to a website.

4.3 Cross-Domain Cookie Sharing
Having established which of the external cookies recorded in the
main crawl can be used to persistently track users, we now focus
on the relationships among: (i) the source domains that serve scripts
responsible for initially setting the tracking ID cookies, which we
identified in Section 4.2.1, (ii) the retriever domains which serve
scripts that read back the tracking ID cookies and send them over
the network, and (iii) the sink domainswhich receive information
derived from tracking ID cookies, sent to them by scripts that are
served from the retriever domains. In particular, we are interested in
caseswhere the sinkdomain is different from both the source domain,
and the cookie domain (i.e., domain on which the cookie was set),
since this indicates cross-origin sharing of identifiers, which further
undermines user privacy.

As mentioned our taint tracking implementation only tracks the
binary status (i.e., tainted or not) during taint propagation. We over-
come this limitation by proposing an orthogonal method (see Sec-
tion 3.4), that uses heuristics to match sink objects against the iden-
tified tracking ID cookies. In the following we give an overview of
the results from our heuristic matching, and present the domain
relationships that we identified.

2Cookie: segmento. It is set on oi.com.br by a script that originates frommaxmind.com.
Its value in our crawl is (truncated): 56c4339f58ee7410VgnVCM10000031d02
00a____-e99eecf7c7cc5410VgnVCM10000031d02...
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Cookies’ Source Domain Websites
Top External Cookie Shared to Third Parties

Cookie Websites Third-Party Example ValueName Destinations

google-analytics.com 3,620 _ga 3,456 329 GA1.2.1687927199.1594842303
facebook.net 2,377 _fbp 2,377 76 fb.1.1594781590601.135769710
googletagmanager.com 1,124 _gcl_au 882 124 1.1.2086254180.1594824717
doubleclick.net 792 __gads 742 114 ID=18d6b32f18c77049-22c915ffccb70097:

T=1594800595:S=ALNI_MZEEA_JlMOtwGQyjjw4rJp4cwDL2A
googlesyndication.com 551 __gads 551 33 ID=7b7fb7d54109a6c6:T=1594819953:

S=ALNI_MYzCXjBjUDNFPiMFgf55XXCoZAVBg
cloudfront.net 469 __asc 310 4 678afacf1735170ad8631aabda0
go-mpulse.net 280 RT 279 424 "si=a1ed29ce-7795-47c5-9830-5745fa3c04bd&

z=1&dm=oracle.com&ss=kcnp67pf&sl=0&tt=0..."3

chartbeat.com 243 _cb 243 6 DQVCY6B3K-HtDvrvFv
cookielaw.org 242 OptanonConsent 242 381 consentId=5b39d6ae-72ba-47d9-9250-4df42b23f5d6&

isIABGlobal=false&interactionCount=0...3

adobedtm.com 239 mbox 153 15 session#50141a1754164b66900a3a2f030f03cd
#1594825706|PC#50141a1754164b66900a3...3

Table 3: Top 10 source domains, whose cookies are then shared to other third parties. Note that we do not include cases where
the destination is the same as the source domain. Also, the third-party destinations column represents the total number of
third parties that receive the corresponding external cookie, across all websites.

Destination Domains Source Domains Cookies

google-analytics.com 198 (187) 427 (405)
doubleclick.net 189 (182) 432 (380)
facebook.com 121 (118) 224 (212)
omtrdc.net 80 (45) 325 (93)
criteo.com 59 (44) 73 (56)
adnxs.com 51 (30) 61 (34)
openx.net 51 (23) 67 (26)
googleadservices.com 48 (46) 75 (73)
taboola.com 45 (43) 70 (68)
bing.com 44 (43) 68 (67)

Table 4: Top 10 third-party destination domains that receive
external cookies by other third parties (different source
domain).

4.3.1 OverviewofHeuristicMatchingResults. Weappliedourheuris-
tic matching algorithms described in Section 3.4 to the 4,212 cookies
that we identified to be containing tracking IDs (see Section 4.2.1),
andwewereable tomatch3,256 (77.30%ofall identifiedUID-containing
cookies) against at least one sink object that was recorded during the
crawl by our taint tracking system. Themain reasonwhy our heuris-
tics were not able to match all the UID-containing cookies to the
flagged sink objects is due to the complex transformations that take
place before a cookie value is eventually leaked over the network.
Indeed, that is why such a measurement study cannot completely
resort on matching heuristics, but also needs to use a taint tracking
system for being able to track the transformations.

We manually inspected several randomly chosen cases of the
matched cookies, and we were able to verify that all of these indeed
correspond to true positive cases that were correctly detected by our
system. Through themanual inspection process we identified which
scripts set the particular cookies (and verified that those are the same
as reported by our system), and we were able to manually track how
those cookies are transformed, and how they reach the sinks. Based

on our manual analysis we are confident that the cases reported by
our methodology are correct in the sense that they do all correspond
to true positive cases. However, unfortunately we are not able to
draw any conclusions regarding any possible false negatives (i.e.,
cases of such cookies that are leaked but our system fails to detect) as
this would require us to manually follow all the cookies of a website,
which is an almost impossible task to performmanually.

4.3.2 Cross-Domain Cookie Sharing. Next, we focus on exploring
cases where the external cookies by one third party are shared to
multiple parties (i.e., third-party destinations) different from both
the source domain (i.e., the third party that initially set the cookie),
and the domain on which the cookie was set. We refer to this case
as cross-domain cookie sharing. That is, in the following we focus on
flows of cookie information from one third-party to another, like the
example case that is presented in Figure 2 and thus, we exclude cases
where the cookies are sent back to the same third party that have set
them. Note that this also excludes the scenario where scripts loaded
from a CDN controlled by the first party sets the cookies which are
then only sent back to the first party.

Out of the 3,256 cookies thatwerematched byour heuristics, 2,354
(55.89% of all UID-containing cookies) are leaked to a third party
that is different from both the source domain and the domain on
which the cookie was set. For convenience, we will refer to this set
of cookies as shared cookies. Table 3 and Table 4 show the highlight
of our findings. In Table 3 we focus on the source of shared cookies,
and we list the top 10 third parties that have their external cookies
shared to other parties (i.e., destinations). We rank the source do-
mains according to the number of first-party websites in which we
observe one of their cookies being shared or leaked to other third
parties, and we provide information about their top cookie that is
shared in most cases. For example, we find 3,620 websites that have
sink objects sharing external cookies by google-analytics.com
to other third-party domains, with the top shared cookie being _ga,

3We truncated these cookies’ values due to space limitations.
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Figure 3: Directed graph representing the unique connections between source domains and third-party destination domains.
The size of the nodes is proportional to their overall degree (i.e., number of connections). The color of nodes represents their
number of unique incoming (left) and outgoing (right) connections, where the third-party domains act as a destination/source
respectively.

which is shared in 3,456 of thewebsites. Themost interesting finding,
however, is that this cookie is shared to 329 different third-party
domains in total, most of which clearly do not belong to Google.
Unlike traditional third-party HTTP cookies, where cookie synchro-
nization is typically performed between two third parties (with clear
consent between the parties involved, i.e., through URL redirection),
our findings show that external cookies are facilitating the extensive
sharing (or leakage) of information to multiple third parties.

In Table 4we focus on the sink domains that receive external cook-
ies set by other parties, andwe list the top 10 ranked by thenumber of
different source domains whose external cookies they received. For
eachdomain inTable 4wealso show the total numberof unique cook-
ies received. For instance, we find that and google-analytics.com and
doubleclick.net receive a total of 427 and 432 unique UID-containing
cookies (thatwerematched by the heuristics), whichwere set in total
by 198 and 189 different source domains, respectively. These num-
bers demonstrate how extensive the utilization of external cookies
is for information sharing currently on the web.

Inaddition to theabove,wealso identify the retrieverdomains (i.e.,
domains serving the code that is responsible for reading the cookies
and diffusing them). If the retriever domain is the same as the source
domainof thecookie, this indicates that the source thirdpartycooper-
ates with the destination third party and willingly shares the cookie.
Otherwise, if the source and retriever domains are not the same, it
indicates that the destination third party is “stealing” the cookie that
was set by another party, possibly without its consent (i.e., this is a
special case of cross-domain cookie sharing, in which the source do-
main did not initiate the sharing). We show the corresponding num-
bers in parentheses in Table 4. For example, our analysis reveals that
google-analytics.com, which receives cookies set by 198 different
parties, uses its own code to read and send the cookies of 187 of them.
Similarly, the scripts loaded from doubleclick.net are responsible for
triggering the sinks that send the cookies of 182 parties back to itself.

In total,weobservecross-domaincookie sharing in5,635outof the
9,772 (57.66%) websites that have external cookies. In particular, we
detect 718 source third-party domains that have their external cook-
ies shared, and 1,778 third-party destination domains that receive
these shared cookies (correspondingly, for the “stolen cookies”, i.e., a
special case of cross-domain sharing, they are observed in 4,735web-
sites, or 48.45%of allwebsites that have external cookies; these stolen
cookies are set by a total of 546 source domains, and leaked to 1,397
sink domains). Figure 3 shows the overall relationships among the
domains engaged in cookie sharing, by representing thegraphsof the
incoming and outgoing connections between the various third par-
ties. Interestingly, as can be seen in Figure 3, apart froma fewGoogle-
owned services that have both a high in-degree and out-degree (i.e.,
google-analytics.com, doubleclick.net), the other third parties have
either a high in-degree (incoming connections from other parties,
i.e., receiving external cookies’ values) or a highout-degree (i.e., their
cookies are shared to multiple destinations). Finally, in Figure 4 we
present the distribution of the number of shared and stolen cookies
per website, and in Figure 5 we plot the distribution of sink domains
per website that correspond to the shared and stolen cookies.

4.3.3 Case Study: Google Analytics. We close this section by giving
a deeper insight into the results presented previously in Section 4.3.2.
Specifically, wemanually examine cases regarding Google Analytics
(GA), which as shown in Tables 3 and 4 (and Figure 3) represents the
party whose external cookies are most frequently stolen, as well as
being the party that receives the most external cookies set by other
domains. Considering that Google owns several ad/tracking-related
domains, such as doubleclick.net, googletagservices.com, etc,
we further filter from our cross-domain sharing cases that involve
google-analytics.com, but with a counterparty (i.e., receiving or
stolen-from domain) that is clearly not Google property. We also
focus our attention on the _ga cookie, which is a well-known cookie
from Google Analytics that contains a per-site client ID [11].
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Note that while in the following we are able to confirm a third-
party script actively reading from the _ga cookie and sending its
value back to a third-party server, we do not know the purpose of
such leaks, or whether this exchange of information is consented to
by both parties, since we do not have visibility into the backend pro-
cessing logic. Nevertheless, our analysis shows that external cookies
do not only allow third parties to bypass the restrictions imposed on
third-party HTTP cookies, but provide an easy way for third parties
to exchange information en masse and cooperate, which endangers
users’ privacy beyond the extent of traditional third-party cookies:
consider for example a third-party service that sets an external first-
party cookie on awebsite that the user visits. That cookiewould then
be accessible to all other scripts, third-party or otherwise, executing
in thefirst-party context. In that sense, all thirdparties that have their
scripts in the page can access information provided by all other third
parties, even without an explicit cooperation agreement between
those third parties (as contrasted with traditional cookie-sharing
agreements). We demonstrate this point more concretely below.
AdobeDemdex: Wefirst focus on a casewhere external cookies set
by Google Analytics are leaked to other third parties. We observed
scripts from adobedtm.com sending the _ga cookie to demdex.net,
which is a domain controlled by Adobe. The value of the _ga cookie
is sent via XMLHttpRequest embedded in the body of a POST request
(with thebodybeingaURL-parameter-style string and theparameter
name being c_gacid in this string, along with other parameters; the
leading GAx.x. prefix is stripped from the value of the _ga cookie
before it is sent, see Table 3 for an sample value of this cookie). An
example of this leakage can be found on http://www.uplus.co.kr
at the time of thiswriting. In our dataset, we found this cross-domain
leakage of the _ga cookie to demdex.net in 17 of the top 10K web-
sites. We manually analyzed the JS code responsible for sending the
cookies, and found that the script, which is obfuscated, reads the
_ga cookie at multiple places in its source code. Although to the best
our knowledge we do not knowwhether Adobe and Google Analyt-
ics have tracking ID exchange agreements, this case illustrates the
ease with which third parties can steal information from each other,
without the consent of the affected parties.
GACustomDimensions: Here we focus on the case where exter-
nal cookies set by other third parties are leaked to Google Analytics.
In Table 4, we have shown that Google Analytics also receives ex-
ternal cookies that were set by 198 other third-party domains, and
that in total Google Analytics uses its own code (that is, code served
from google-analytics.com) to read cookies from187 of them.We
manually examined their corresponding sink objects, and found that
the leaked external cookies containing unique tracking IDs, which
were set by scripts served fromdomains thatGoogle doesnot control,
were being sent to google-analytics.com encoded in the HTTP
request’s URL as one of its cdX parameters, where X is a number.
Upon further investigation, we found that this is due to a Google
Analytics feature known as “custom dimensions and metrics” [12],
which can be enabled and configured by the website owners, and
that the cdX parameters encode additional metrics (in this case ex-
ternal cookies set by other third parties) that Google Analytics does
not automatically report by default. We point out that this usage
scenario highlights the abusive nature of external cookies: website
owners, instead of using their own infrastructure to record external
tracking cookies set on their websites, abuse the custom dimensions
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Figure 4: CDF of the number of both shared and stolen
cookies per website of the Alexa top 10K.
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Figure 5: CDF of the number of sink domains per web-
site corresponding to both the shared and stolen cookies
encountered on each website.

feature to aggregate all external tracking cookies to another third
party tracking provider, without the knowledge of the users and in
doing sopossibly also violating the termsof agreementwith the third
parties whose external cookies are reported to Google Analytics.

4.4 Fingerprinting
Finally, we address the limitation of our tracking ID detection algo-
rithm at identifying tracking ID cookies whose values are always
the same due to them being generated based on fingerprinting. As
mentioned in Section 3.3, this limitation stems from the fact that
the ID detection algorithm relies on comparing the difference in
values set for the same cookie on separate crawls. In Section 4.2.3,
we manually found a cookie ucfunnel_uidwhose value resembles
a UID string (indeed the cookie’s name suggests it is used as an ID
cookie), and remains constant on our two separate crawls. In this
section, we explore such cases in a more systematic manner, and
attempt to quantify howmany potentially UID-containing cookies
that our ID detection algorithmmissed.We remark that our purpose
in this section is to establish that the results we report in this paper
is not significantly impacted by the limitation of our ID detection
algorithm, and we leave to future work the automatic identification
of fingerprinting-generated UID cookies.
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Script Domain Cookie Name #Websites Value

aralego.net ucfunnel_uid 2 88d501e0-40f3-3fcf-bf48-c8fa59bc7efd
clarip.com c_uuid 5 2501186645373654028409053736260080024
futurecdn.net FTR_FingerPrint 4 6b2aad5d1452f2e65a0c1874aa09fee0

Table 5: Manually identified fingerprinting-generated cookies.

Our strategy to detecting fingerprinting-generated cookies in-
volves: (i) we cluster the Alexa top 10Kwebsites that we visited in
the main crawl (when we visited each website using a fresh instance
of Chromium) based on the names of the non-session cookies that are
set on them, so that websites that have a cookie with the same name
are placed in one cluster, and (ii) we set up our crawling infrastruc-
ture (see Section 3.5) to crawl the websites in the same cluster in a
sequential order, one after another, using the same browser instance
(so the browser state is kept in between visits to different websites).
We disable third-party cookies in this crawl to prevent trackers from
using them to synchronize their UIDs across first-party boundaries
(such that if any cookies are set with the same UID, then it is highly
likely that the UID is generated from fingerprinting). Since the track-
ing ID detection algorithm does not work here, we do not need to
collect control values for the cookies, and thus the websites in each
cluster are visited only once and there is no distinction ofmain crawl
and control crawl, as we had before. Note that the total number
of clusters is the total number of cookie names that are common
across websites (i.e., websites that have more than one cookie name
in common will appear in more than one cluster). In our main crawl,
there are 919 non-session unique cookie names that appear in more
than one website, so in total we have 919 clusters for this crawl.

Wefind potentially fingerprinting-generatedUIDs in the crawl re-
sult by looking for cookieswhose value remains the sameacrossweb-
sites in the samecluster. In total,we found166.However, this doesnot
indicate that all of these cookies contain tracking IDs: 119 of them do
notmeet thevalue length requirement of our tracking IDdetection al-
gorithm.Wemanually perused the values of the rest of the 47 cookies:
themajoritydonot containunique identifying information (e.g., only
the geolocation, IP address, timestamps, and short strings similar to
what we reported in Section 4.2.4). Nevertheless, we list in Table 5
the 3 cookies (including the previously mentioned ucfunnel_uid)
that we found to be highly indicative of fingerprinting.

5 RELATEDWORK
Our work presented in this paper is related to previous research on
the topics of (i) measurement of, and defense against, third-party
web tracking, and (ii) JavaScript sandboxing.
Third-party tracking. The web’s power comes from its ability to
link to third-party contents, but this also enables third-party tracking.
Krishnamurthy et al. [25] examined the prevalence of third-party
tracking by carrying out a longitudinal study. Mayer et al. [29] pro-
posedawebmeasurementplatform,FourthParty, to survey thepolicy
and technology issues involved in third-party tracking. Englehardt
et al. [21] conducted a large-scale measurement of Alexa top one
millionwebsites. Other than puremeasurements, previouswork also
proposeddefensesagainst third-party tracking [32, 34]. Panet al. [32]
proposed an anti-tracking browser that isolates unique identifiers
into different browser principals so that the accuracy of those iden-
tifiers is significantly reduced. Roesner et al. [34] explored various

techniques employed by trackers. Although the authors acknowl-
edged that external cookies can be used to track repeat visitors to the
same website (i.e., case of web analytics), they underestimated their
potential in bypassing third-party cookie blocking and facilitating
cross-domain exchange of tracking IDs, a capability which we exam-
ine at length in this paper. Franken et al. [24] evaluates third-party
cookie policies on the currentweb.A recentwork, by Fouad et al. [23]
exploreddifferent techniquesemployedby trackers, andamongthem
found that the values of first-party cookies can be leaked to third
parties. Our work adds another perspective to this ongoing line of
research by focusing onfirst-party cookies that are set by third-party
code, and explore how they relate to third-party tracking on the web.

Lastly, Sanchez-Rola et al. [35] is a closely related work that is
concurrent to ours, which studies “ghost cookies” that is conceptu-
ally the same as external cookies. In that work the authors propose
the notion of cookie trees to systematically explore the relationships
among entities engaged in web tracking, but they lack the detailed
JavaScript data flow information that is afforded by an analysis sys-
tem such as Mystique, which we leverage in this work. Combining
the strengths of their methodology and ours is a promising direction
for further bettering the understanding of web tracking.
JavaScript sandboxing: The abuses of first-party cookies set by
third-party JS code, which we focus on in this paper, can be elimi-
nated or otherwise mitigated, if browsers implement sandboxing for
scripts loaded from different origins. The Chrome browser already
enforces a form of sandboxing where the content scripts injected by
browser extensions cannot access any variables or functions created
by the normal JavaScript code running on the page, or by other con-
tent scripts [4]. Previous research in sandboxing JavaScript byAgten
et al. [18] proposes an approach to securely integrate third-party
JavaScript code that achieves complete mediation. They improved
on existing works that rely on instrumenting untrusted code on the
server side to a safe subset of JavaScript (e.g., [33]), or implementing
a referencemonitor inside the browser (e.g., [30, 37]). Adapting these
research efforts to mitigate the privacy impact of first-party cookie
tracking is a direction for future work.

6 LIMITATIONS AND FUTUREWORK
The methodology we proposed in this paper, with regard to measur-
ingweb tracking, can be further improved in severalways.Webriefly
summarize in this section the directions in which future research
can build on our work. These include: (i) taint engine improvements,
specifically the capability to assign “colors” to external cookies set
by different origins (i.e., multi-color taint), which as we mentioned,
would improve the precision of the detection results since this obvi-
ates the need to rely on heuristicmatching of sink objects against the
recorded external cookies, and allows one to single out more sophis-
ticated cases that encode tainted values in ways not anticipated by
the heuristics, (ii) considering other persistent storage mechanisms
provided by the browser, such as localStorage, as taint source, to
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see whether they are being utilized similarly for web tracking, and
finally, (iii) orthogonal to the work presented in this paper, instead
of relying on matching the eTLD+1 domain to define third-party do-
mains (and thus third-party JS code), our results could further benefit
from having a systematic method tomap a domain to its owner orga-
nization (e.g., both google-analytics.com and doubleclick.net
belong to the same organization, which is Google), since this would
reflect more closely the relationships among the entities in the web
tracking ecosystem.

7 CONCLUSION
In this paper, we examine a web tracking method that abuses first-
party cookies that are set by third-party JavaScript code, which has
been largely neglected by previous works. We refer to these third-
party-originated first-party cookies as external cookies, and they
are used for circumventing browser policies that seek to block tra-
ditional third-party cookies as well as facilitating mass exchange of
tracking IDs. In order to measure how external cookies are being
used for web tracking, we implemented dynamic taint analysis for
cookies in the Chromium browser, and use it to analyze the Alexa
top 10K websites. We show that external cookies are already widely
used: they are encountered on 9,772 (97.72%) of the Alexa top 10K,
and that 57.66% of these websites have third parties that exchange
tracking IDs stored in external cookies. Our results clearly indicate
that existing mitigation techniques, such as blocking third-party
cookies and using filter lists such as EasyList/EasyPrivacy, are not
adequate to protect users from third-party tracking, and thus the
web needs additional countermeasures to protect users.
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