
CS181CA-PO: Computer Architecture Fall 2025, More Multicore Architectures

More Multicore Architectures

1

Last lab tonight!
HW3 due Friday*

*To know if I should extend the HW3
deadline, please take a moment to

complete the linked form:
https://forms.cloud.microsoft/r/

UeFtH7vcTc

https://forms.cloud.microsoft/r/UeFtH7vcTc
https://forms.cloud.microsoft/r/UeFtH7vcTc

CS181CA-PO: Computer Architecture Fall 2025, More Multicore Architectures

Outline

• Multicore architecture design decisions

• Examining synchronization primitives in hardware

• Designing software for thread-level parallelism

2

CS181CA-PO: Computer Architecture Fall 2025, More Multicore Architectures3

(From Monday) The Speedup Pitfall with Amdahl’s Law

• To understand speedup due to thread-level parallelism, we need to
understand how much of the program is parallelizable versus being sequential

• Amdahl’s Law: speedup = ((1 - % parallel) + (% parallel / speedup parallel))-1

• Example: suppose a program that is 85% parallelizable is written for 100
cores with 75 threads

Speedup = ((1 - .85) + (.85 / 75))-1
Speedup = 1 / (.15 + .0113)
Speedup = 6.2 times speedup

Speedup = ((1 - .85) + (.85 / 100))-1
Speedup = 1 / (.15 + .0085)
Speedup = 6.3 times speedup

80 = ((1 - p) + (p / 100))-1
80((1 - p) + (p / 100)) = 1
80(1 - p) + 80(p / 100) = 1

80 - 80p + .8p = 1
-79.2p = -79

p = .9974

100
threads?

How
parallel to
get 80x?

Takeaway: programs require very high
percentages of parallelizable regions to

fully benefit from multicore!

CS181CA-PO: Computer Architecture Fall 2025, More Multicore Architectures4

Simple Multicore Architectures
CPU

L1 Cache

L2 Cache L3 Cache

CPU

L1 Cache

L2 Cache

Main Memory

Describes a centralized
shared-memory

multiprocessor or a symmetric
multiprocessor

Uniform access
latency to all data

in memory

Limits the number of cores
that can fit within a single

processor chip

CS181CA-PO: Computer Architecture Fall 2025, More Multicore Architectures5

Distributed Memory Multiprocessor Architectures

CPUMain Memory 0

CPUMain Memory 1

CPUMain Memory 2

CPU Main Memory 3

CPU Main Memory 4

CPU Main Memory 5

In
te

rc
on

ne
ct

 N
et

w
or

k

0x0000 ➡
0x00ff

0x0100 ➡
0x01ff

0x0200 ➡
0x02ff

0x0300 ➡
0x03ff

0x0400 ➡
0x04ff

0x0500 ➡
005ff

Non-uniform
access latency to

all data in memory!

How to do
consistency?

Snooping!

CS181CA-PO: Computer Architecture Fall 2025, More Multicore Architectures

Multiprocessor Architectures

• A multiprocessor may implement a simple symmetric multiprocessor architecture or a
distributed shared memory multiprocessor

• Symmetric multiprocessors are limited in the number of processors that can fit within
a single chip due to limitations of shared bus widths, etc…

• Processors in a distributed shared memory multiprocessor architecture maintain a
small subset of the address space close to their core ➡ for that processor, this is
referred to as local memory

• Fetching or storing data in local memory is performed at a lower latency than
performing the equivalent accesses in a remote memory (e.g., a subset of the address
space not associated with that processor) due to traversing the interconnect network

6

CS181CA-PO: Computer Architecture Fall 2025, More Multicore Architectures

Consider the distributed shared memory multiprocessor
architecture. How might you implement a shared last-level
cache (e.g., L3 cache)? Think about where the cache would

need to reside and how each processor would access it.

7

Chat with your neighbor(s)!

Just like how memory may
be distributed into non-
uniform memory access,

caches can have non-
uniform access as well!

If we want to avoid a NUCA
architecture in a DSM, then

we need to give up the
semantics of shared caches!

CS181CA-PO: Computer Architecture Fall 2025, More Multicore Architectures

Implementing a Multi-Threaded Program

8

CPU CPU

🏦
Balance: $0

Deposit $100 Withdraw $30

???

Acquire Lock;
Deposit $100;
Release Lock

Acquire Lock;
Withdraw $30;
Release Lock

Balance: $100Balance: $30
How should the lock be

implemented?

CS181CA-PO: Computer Architecture Fall 2025, More Multicore Architectures

Implementing a Mutex (mutual exclusion)

9

class Lock {
atomic<bool> held = false;

void acquire() {
while (!compare_exchange_weak(false, true)) { };

}

void release() {
held = false;

}
};

What is meant by
“atomic”?

CS181CA-PO: Computer Architecture Fall 2025, More Multicore Architectures

Implementing a Mutex in the Memory System

10

CPU

L1 Cache

L2 Cache L3 Cache

CPU

L1 Cache

L2 Cache

Main Memory

compare_exchange_
weak(false, true);

F

FF

F

compare_exchange_
weak(false, true);

F

F

S

S

S

S

Invalidate

Invalidate I

IInvalidate

Invalidate

Invalidate

Invalidate

I

I

CS181CA-PO: Computer Architecture Fall 2025, More Multicore Architectures

Implementing a Better Mutex

• To call “compare_exchange_weak” means
that many coherence messages will be sent
throughout the memory system to modify
the shared variable!

• To reduce the coherence traffic in the
memory system, we can implement a test-
and-set lock (TAS) to minimize the data race

• Reducing coherence traffic will benefit the
thread that currently holds the lock!

11

void acquire() {
while (true) {

while (held) { };
if (compare_exchange_weak(false, true)) {

return;
}

}
};

Image Credit: https://
pdos.csail.mit.edu/6.828/2010/
readings/anderson-locks.pdf

CS181CA-PO: Computer Architecture Fall 2025, More Multicore Architectures

Suppose we are implementing a multithreaded
program with a mutex. What coherence traffic would
you expect in the memory system to update the bank

account balance?

12

Chat with your neighbor(s)!

When using a lock, the coherence
of data in the “critical section”
should be more trivial for the
memory system to handle!

CS181CA-PO: Computer Architecture Fall 2025, More Multicore Architectures

Takeaways

• Multiprocessor architectures can vary in their implementation to reach large
scale deployments

• We can implement software constructs (e.g., a mutex) using special types that
dictate the behavior in the memory system

• If we understand how coherence is implemented in the memory system, we
can write better software the outperforms

13

