()

*To know if | should extend the HW3
deadline, please take a moment to
complete the linked form:

https://forms.cloud.microsoft/r/
UeFtH7vcTc

More Multicore Architectures

Last lab tonight!
HW3 due Friday*

& _J

CS181CA-PO: Computer Architecture 1 Fall 2025, More Multicore Architectures

https://forms.cloud.microsoft/r/UeFtH7vcTc
https://forms.cloud.microsoft/r/UeFtH7vcTc

Outline

* Multicore architecture design decisions
 Examining synchronization primitives in hardware

* Designing software for thread-level parallelism

CS181CA-PO: Computer Architecture 2 Fall 2025, More Multicore Architectures

(From Monday) The Speedup Pitfall with Amdahl’s Law

Takeaway: programs require very high
percentages of parallelizable regions to
fully benefit from multicore!

 [o understand speedup due to thread-level parallelian, we need to

~

J

understand how much of the program is parallelizable versus being sequential

« Amdahl’s Law: speedup = ((1 - % parallel) + (% parallel / speedup parallel))-1

 Example: suppose a program that is 85% parallelizable is written for 100
cores with 75 threads

-

Speedup = ((1 - .85) + (.85 / 75))-1
Speedup=1/(15+.0113)
Speedup = 6.2 times speedup

-

~

100
threads?

CS181CA-PO: Computer Architecture

_

~

_J

(")

Speedup = ((1 - .85) + (.85 / 100))-1
Speedup =1/ (.15 + .0085)
Speedup = 6.3 times speedup

~

parallel to

U J

?
kget80x.)

How

~

80 =((1 - p) + (p /100))
80((1-p)+(p/100) =1
80(1 -p) +80(p/100) =1
80 -80p + .8p =1
-79.2p = -79
p =.9974

J

Fall 2025, More Multicore Architectures

Simple Multicore Architectures

CPU

L1 Cache

_

Limits the number of cores
that can fit within a single
processor chip

J

-
Describes a centralized

shared-memory
multiprocessor or a symmetric

multiprocessor

7 CPU

L1 Cache
v

v
L2 Cache L3 Cache — L2 Cache

CS181CA-PO: Computer Architecture

Main Memory

~

Uniform access
latency to all data
In memory

J

Fall 2025, More Multicore Architectures

Distributed Memory Multiprocessor Architectures

0x0000
Ox0O0ff

0x0100
OxO1ff

0x0200
Ox02ff

Main Memory 0

Main Memory 1
Main Memory 2

CS181CA-PQO: Computer Architecture

-

all data in memory!

CPU

-

Non-uniform
access latency to

~

J

Main Memory 3

CPU

Main Memory 4

&)
=
-
o
=
e
O
Z
nfed
O
0
c
c
o)
O
S
)
e
=
- .
How to do
consistency?
Snooping!

Main Memory 5

5

0x0300
Ox0a&ff

0x0400 &J
OxO4ff

0x0500
0O05ff

Fall 2025, More Multicore Architectures

Multiprocessor Architectures

* A multiprocessor may implement a simple symmetric multiprocessor architecture or a
distributed shared memory multiprocessor

o Symmetric multiprocessors are limited in the number of processors that can fit within
a single chip due to limitations of shared bus widths, etc...

* Processors in a distributed shared memory multiprocessor architecture maintain a
small subset of the address space close to their core 4 for that processor, this is
referred to as local memory

* Fetching or storing data in local memory is performed at a lower latency than
performing the equivalent accesses in a remote memory (e.g., a subset of the address
space not associated with that processor) due to traversing the interconnect network

CS181CA-PO: Computer Architecture 6 Fall 2025, More Multicore Architectures

Chat with your neighbor(s)!

Consider the distributed shared memory multiprocessor
architecture. How might you implement a shared last-level
cache (e.g., L3 cache)? Think about where the cache would
nheed to reside and how each processor would access it.

(N\ [)

Just like how memory may
be distributed into non-
uniform memory access,

caches can have non-

uniform access as well!
_ J _ J

If we want to avoid a NUCA
architecture in a DSM, then
we need to give up the
semantics of shared caches!

CS181CA-PO: Computer Architecture 7 Fall 2025, More Multicore Architectures

How should the lock be
implemented?

_

CS181CA-PQO: Computer Architecture

_Acquire Lock;

Implementing a Multi-Threaded Program

_/\
ﬁ E 27?7
| Eﬂ - /

Uiy

L Balance: $30

\

Fall 2025, More Multicore Architectures

a f \

What is meant by
“atomic”?

class Lock {
atomic<bool> held = false;

void acquire() {

while (!compare_exchange_weak(false, true)) {

void release() {
held = false;

-

15

CS181CA-PQO: Computer Architecture

cppreference.com

Page Discussion

C++ Concurrency support library std::atomic

std::atomic

Defined in header <atomic>

template< class T >
struct atomic;

template< class U >

2
struct atomic<U*>; (2)
Defined in header <memory>
template< class U >
. (3)
struct atomic<std::shared ptr<U>>;
template< class U > @)
struct atomic<std::weak ptr<U>>;
Defined in header <stdatomic.h>
#define Atomic(T) /* see below */ (5)

(since C++11)

(since C++11)

(since C++20)

(since C++20)

(since C++23)

Implementing a Mutex (mutual exclusion)

‘ ’ \ Search ’

Each instantiation and full specialization of the std: :atomic template defines an atomic type. If one thread writes to an
atomic object while another thread reads from it, the behavior is well-defined (see memory model for details on data

races).

In addition, accesses to atomic objects may establish inter-thread synchronization and order non-atomic memory

accesses as specified by std: :memory order.
std::atomic is neither copyable nor movable.

Fall 2025, More Multicore Architectures

Implementing a Mutex in the Memory System

compare_exchange_
weak(false, true);

compare_exchange
weak(false, true);

CPU

e: Invalidate
Cl! Invalidate I

Invalidate

Main Memory

CS181CA-PO: Computer Architecture 10 Fall 2025, More Multicore Architectures

Implementing a Better Mutex

é)
 Jo call “compare_exchange weak” means S
. I
that many coherence messages will be sent T e Ctmay
' while (held) { };
throughout the memory system to modify It (compare, oxehange. weak(false, true)) {
the shared variable! return;
)
L }

 To reduce the coherence traffic in the)

memory system, we can implement a test-

70)
and-set lock (TAS) to minimize the data race _ =
» Reducing coherence traffic will benefit the } & ER ee—
thread that currently holds the lock! R I pdos.caail mitedu/6.826/2010/
1 5 9 13 17 _ J

Fig. 1.Principal performance comparison: elapsed time (second) to execute
benchmark (measured). Each processor loops one million/P times: acquire
lock, do critical section, release lock, and compute.

CS181CA-PO: Computer Architecture 11 Fall 2025, More Multicore Architectures

Chat with your neighbor(s)!

Suppose we are implementing a multithreaded
program with a mutex. What coherence traffic would
you expect in the memory system to update the bank
account balance?

(")

When using a lock, the coherence
of data in the “critical section”
should be more trivial for the
memory system to handle!

CS181CA-PO: Computer Architecture 12 Fall 2025, More Multicore Architectures

Takeaways

* Multiprocessor architectures can vary in their implementation to reach large
scale deployments

 We can implement software constructs (e.g., a mutex) using special types that
dictate the behavior in the memory system

* |f we understand how coherence is implemented in the memory system, we
can write better software the outperforms

CS181CA-PO: Computer Architecture 13 Fall 2025, More Multicore Architectures

